Effects of bottlenecks on immunity genes in NZ's threatened birds

PI: Ian Jamieson

Al: Catherine Grueber (postdoc)

PhD student: Gabby Knafler

Collaborators:

- Bruce Robertson (Otago)
- Zoe Grange (PhD), Brett Gartrell, Nigel French, Nicky Nelson, DOC
- Bethany Jackson (PhD), Richard Jacob-Hoff (Auckland Zoo), DOC

Effects of bottlenecks on immunity genes in NZ's threatened birds

Background to Strategic Initiative

- Bottleneck → Loss of genetic diversity
 - → Loss of evolutionary potential / ability to adapt (e.g. impaired immune response)

- Neutral markers (e.g. microsatellites) used as surrogate for coding regions
- Longer-term consequences of loss of immune diversity under-appreciated
- Disease issues increase when threatened species are translocated outside their historic range
 - Takahe, Saddleback, Kakapo

Bottlenecks and immunity genes

Translocated populations far from source populations:

Bottlenecks and immunity genes

Translocated populations far from source populations:

Takahe Lowest diversity S.I. Saddleback Low-Moderate diversity Kakapo Variable diversity

Bottlenecks and immunity genes

Variation in immunity genes and incidence of BFDV in kakariki

Bethany Jackson & Richard Jacob-Hoff
Gabby Knafler, Catherine Grueber & Bruce Robertson

- Quantify immunogenetic variation within and between LBI/Hauturu (source) and Tiritiri Matangi (bottleneck).
- Relate genetic data to disease and immunity data at individual level

Effects of bottlenecks on immunity genes in NZ's threatened birds

Goal of Strategic Initiative

- Highlight relationship between disease susceptibility and loss of diversity in immunity genes in four high profile NZ species:
 - Takahe, Saddleback, Kakapo, Kakariki (BFDV)
- Immunity genes:
 - Major Histocompatibility Complex (MHC);
 - Toll-like Receptors (TLRs)

TLR and MHC

Immunity genes

Major histocompatibility complex (MHC)

- Encode cell-surface proteins responsible for presentation of foreign peptides
- Evidence that balancing selection plays a role in evolution
- Well-studied in molecular ecology of wild populations
- Technically challenging to work with in birds, especially passerines

Class I

Class II

Immunity genes

Toll-like receptors (TLR)

- Ancient family of innate immunity receptors that bind pathogen-associated molecular patterns
- 10 TLRs in birds: diversity of pathogens
- Some evidence of a role of balancing selection
- Sequence variation → variation in immune function
- A way to diversify the genetic diversity toolkit

- Fewer technical challenges:
 - More conserved than MHC
 - Can be typed using Sanger sequencing or SNP-typing platforms
 - Standard statistics and diversity metrics can be calculated

Diversity of 10 avian TLRs

			100		
Locus	Presumed pathogen targets	House Finch Most N = 8	Lesser Kestrel Most N = 8	Stewart Is robin N = 12 founders	
TLR1LA	- Linoprotoin o a Myooplaama	62 (N = 51)	11	2	
TLR1LB	 Lipoprotein e.g. Mycoplasma 	20 (N = 13)	15	2	
TLR2A	Peptidoglycan of Gram+ bacteria	8	5	1	
TLR2B	Eukaryote fungi & other parasites?	11	3	2	
TLR3	Viruses with dsRNA	9	2	1	
TLR4	Lipopolysaccharide of Gram- bacteria, plus other things	14	7	5	
TLR5	Flagellate bacteria	3	16	3	
TLR7	Viruses with ssRNA e.g. avian influenza	15	4	> 2?	
TLR15	Uncertain, Gram+ and Gram- bacteria?	16	14	2	
TLR21	CpG motifs of bacterial and viral DNA ("functional homolog" of mammal TLR9)	2 (N = 4)	3	3	
Mean		16.0	8.0	2.6 (poly)	
		Alcaide & Edwards <i>Mol. Biol. Evol.</i> (2011)		Grueber, Wallis, King & Jamieson	

PLoS One (2012)

TLRs and fitness: an example

Microsats:

53% of microsatellite loci variable

Average ~ 3.0 alleles per locus

Mean $H_E = 0.436$

TLRs and fitness: an example

Effects of TLR genotypes on survival

- Juvenile first-year survival is the robins' most vulnerable period
- Affected by inbreeding and microsatellite heterozygosity
- In general, TLR heterozygosity doesn't appear to be associated with survival
- Nor particular alleles but what about TLR genotypes?
 - Base model is the effect of inbreeding coefficient (from pedigrees), and year of hatch, on juvenile survival.
 - 2. Then, for the three TLRs with >2 alleles, make new models with each of the genotypes
 - 3. Rank the models by AIC_C to compare them.

TLRs and fitness: an example

TLR4 (5 alleles)

Model	β_{ii} (± SE_{β})	AIC _C	∆AIC _C	W _i	N _{ii}	Survival _{ii}
Base + BE	1.007 (0.448)	667.6	-	0.511	60	90%
Base + AA	0.463 (0.303)	671.4	3.82	0.076	95	84%
Base	-	672.4	4.79	0.047	645	78%
Base + BD	-0.443 (0.394)	672.7	5.14	0.039	34	71%
Base + BC	0.456 (0.456)	672.8	5.24	0.037	42	86%
Base + DD	-1.491 (1.437)	672.9	5.34	0.035	2	50%
Base + CE	-0.942 (0.932)	673.0	5.40	0.034	5	60%
Base + AC	-0.272 (0.278)	673.0	5.40	0.034	81	74%
Base + CC	-0.847 (0.889)	673.1	5.53	0.032	6	67%
Base + BB	-0.230 (0.283)	673.3	5.69	0.030	79	75%
Base + EE	-1.025 (1.449)	673.4	5.85	0.027	2	50%
Base + AD	-0.236 (0.352)	673.5	5.90	0.027	48	75%
Base + AE	-0.239 (0.428)	673.6	6.03	0.025	31	74%
Base + AB	-0.078 (0.234)	673.8	6.22	0.023	137	77%
Base + CD	-0.079 (0.589)	673.9	6.31	0.022	17	76%
Base + DE	-	-	-	-	6	100%

TLR diversity in threatened NZ birds

1LA	1LB	2A	2B	3	4	5	7	15	21
✓	✓			✓	√	✓	√	✓	✓
✓	✓		✓	✓	√	√	√	✓	
✓			✓	✓	√	√	√		
✓	√		✓	✓	✓	✓	✓		

Next steps

Can we learn more about how TLRs evolve? Phylogenetic approach.

Initial surveys of TLR diversity (modest sample sizes – more to come...)

Takahe: 2/8 TLR loci variable

Saddleback: 2/8 TLR loci variable

Kakapo: 1/6 TLR loci variable

Kakariki: 6/7 TLR loci variable

MHC work is underway (Gabby Knafler)

Can genetics aid in identification of kakariki that are susceptible to, or carriers of, beak and feather disease virus (BFDV)?

Thank you

PI: Ian Jamieson; PhD student: Gabby Knafler

Collaborators: Bruce Robertson (Otago); Zoe Grange (PhD), Brett Gartrell, Nigel French, Nicky Nelson (DOC); Bethany Jackson (PhD), Richard Jacob-Hoff (Auckland Zoo), DOC Graham Wallis, Tania King, Stefanie Großer, Chris Harris, Sheena Townsend, Jolene Sutton

