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Overview

@ Motivation and background
@ Inference for epidemics
© Partially observed contact networks

@ Results and ongoing work: Orongorongo valley
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Motivation and background

Motivation

@ Bovine tuberculosis

o Cost
e Maintenance host: brushtail possum

@ Understand dynamics of bTB transmission in possum
populations

o How fast?
o Determinants (ie. which possums)?

@ Can we use trapping data, proximity logging, lab testing to
infer disease dynamics?
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Motivation and background

Approach

@ Data

o Capture-recapture data (movement)
o Proximity loggers (contact network)
o Lab sampling (infection status)

@ Bayesian epidemic models
e Stochastic dynamical models
e Flexible — may include many sources of data

o Reflect underlying population characteristics
e Account for missing data
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Epidemics

Epidemic models: history
The SIR Model
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Refs: Kermack and McKendrick (1927); Bailey (1975); Becker
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Epidemics

Population-based approach

Models transmission between pairs of individuals

@ Flexibility of modelling

o Detailed heterogeneity
o Interpretability of parameters

@ Incorporation of different types of data

o Probabilities
o Rates
o Contact matrices

Allows modelling of highly heterogeneous populations at the

individual (farm) level EIDReC



Epidemics

The Model

Infectivity

Time

@ Continuous time stochastic mechanistic model

o Individual = farm @IDRGC



Epidemics

Infectious pressure

@ At any time t, susceptible j has infectious pressure exerted on
it by
e all infected farms /
e “Background” - eg wildlife

\1 ,{/‘ In a small time interval At:
._>.<_ P(j infected) ~ T; - At

=B+ > B+ D B

ie{li<li<N;} ie{N;<l;<R;}

A\
<

©IDReC

nfe



Epidemics

The Model

Population structure

Transmission Equations

8y = ai: )s(: €) {K(jiw) +efp+cf B}  ieljes

i =7a(i; Qs K (i, ji ) icN,jeS
q(i; ¢) infectivity of i s(J; &) susceptibility of j
c;; static contact network rij dynamic contact network
K(i,j; ) distance kernel v “quarantine” parameter
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Epidemics

The Model

Infection times

@ Infection times are not directly observed

e Notification time is observed
o Assume a distribution fp(-) for Infection to Notification time
e eg Gamma(a, b)

Density
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Epidemics

Approach to inference

@ Construct a likelihood describing the continuous-time
stochastic epidemic, conditional on the infection times

@ Bayesian approach allows:
@ Coherent inclusion of Prior information
@ Expert opinion
@ Previous disease outbreaks

@ Natural framework to include unobserved data by data
augmentation MCMC methodology

o Unobserved infection times
o Occult infections
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Epidemics

Prior distributions

e Gamma for rates (8 > 0)

@ Beta for probabilities (0 < p < 1)

e Uniform for infection times (—oo < [ < Typs)
°

Uniform for occult status (0 or 1)

Priors chosen to agree with expert opinion and previous
knowledge of epidemics
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Epidemics

Influenza H5N1 in British Poultry

o Extract from Great Britain Poultry
Register (May 2006)
@ 38363 registered poulty premises after data
cleaning
e Production stock only (10 types)

@ 3 contact networks identified

o Feed lorries
o Slaughterhouse lorries
o Company association

@ OS National Grid coordinates for each
premises

Legend
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Epidemics

The Model

Infection rate

transmission rate

Bii = N (51 CIM + B, C3M + B3 CEP + B4e‘56‘f’["vf]> icljes

B5 = N, @56%.,,[,-,,-]) ieNj€eS

v

Time to Notification

P(D > d) — el—a(e>7)

Time between infection and notification, D|/ = N — |
where a > 0,6 > 0.
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Epidemics

Simulated epidemic

@ No HPAI epidemic in the UK yet!

@ Simulate epidemic on our dataset
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Epidemics

Risk Prediction

Points of interest:

@ How does the parameter uncertainty change with the
amount of available data?

@ How does the risk to specific farms change over the course of
the epidemic?
e Achieved by forward simulation of the epidemic using random
sample of parameter values from posterior

@ What are the locations of occult infections?

@ Which farms would present the greatest danger to the
population if they were to be infected?
©IDReC



Epidemics

Farm-specific “Ry": R;

“The expected number of farms each farm i might infect were it to
be infected (in a totally susceptible population).”

# # #
Pr(Ri > 1) g st Pr(Ri > 1) g Pr(Ri>1)
7 “ 0.000-0.200 7 * 0.000-0.200 74 0,000 -0.200
s 0.201-0.400 0.201-0.400 b 0.201-0.400
0.401 - 0.600 - 0.401 - 0.600 - 0.401 - 0.600
0,601 -0.800 0,601 -0.800 0,601 - 0.800
* 0,801-1.000 " 0.801-1.000 * 08011000

14 days 25 days 50 days
Table: Median R;




Contact networks

bTB in Possums

Questions:

@ How do we know where a possum lives?

@ What determines possum contact networks?

e Contact frequency?
e Duration of contact?
o Age, sex , etc?

@ How do we infer a possum contact network?
e — feed into epidemic model!

©IDReC



Contact networks

The Ornstein-Uhlenbeck Process
SDE for mean-regressive diffusion process, eg Blackwell, 2008; Ramsey & Efford, 2010

@ Possums move according to Brownian motion

@ Should have a centre of attraction, eg. den, feeding sites,
“average location”

@ Assume independence and isotropy

Ornstein-Uhlenbeck Diffusion

X¢ — position at time t  u — “mean” location
a — drift coefficient B — diffusion coefficient
dB; — Brownian motion

@ Work with Alex James, Otago IDReC



Contact networks

The Ornstein-Uhlenbeck Process

Solution

@ Solution of OU process is Gaussian!

Solution of OU process

2
Xits|Xie ~ N <Mi + (xis — pi)e™° s (1 - e‘2ai5)>
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Contact networks

The Ornstein-Uhlenbeck Process

Remarks

@ Does not rely on coherent observations wrt time
@ Home range — define as 2-d Gaussian distribution!

o May allow validation by investigation of denning sites (eg.
radio tracking)

@ L are nuisance parameters — Bayesian approach integrates
this out

@ "Overlap” between re-constructed limiting distributions
e Proportion of time i is within distance r of j,

Tii(r) = Pr(llx — [l < r)

o CDF of difference between two bivariate Normal rv's. EIDReC



Results

Possums in the Orongorongo valley

ORR valley model

log 5; = bo + (1 - sex; + P2 - maturity; + (3 - sex; - maturity;

4 grids, 360m x 360m: results Grid A only

Capture-recapture data, non-coherent

What is the possum home range?

Does maturity (age) and sex influence home range?

@ Priors non-informative
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Results

Possums in the Orongorongo valley

Coefficient marginal posteriors

a exp(bp)
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Possums in the
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Results

Possums in the Orongorongo valley

Bayesian posterior prediction: possum home range

Posterior predictive home range




Results

Next steps...

OU process looks promising for modelling possum movements

From our data, small effect of maturity/sex

Grid A only — do we see the same effect in other grids?

Couple possum OU processes using proximity logger data

o We know possums were in proximity, but must impute location
of contact

Integrate into SIR-type epidemic model
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Results

Challenges

o Partial observation of the population

@ Case detection

e Coordinated with trapping times
e Sensitivity and Specificity
o Censored observations

@ Computational aspects:

e High dimensional missing data
o DA-MCMC implementation
o Non-centered parameterisation

@ Validation of predictive distributions of epidemics
©IDReC



Results
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