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Motivation

Bovine tuberculosis

Cost
Maintenance host: brushtail possum

Understand dynamics of bTB transmission in possum
populations

How fast?
Determinants (ie. which possums)?

Can we use trapping data, proximity logging, lab testing to
infer disease dynamics?
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Approach

Data

Capture-recapture data (movement)
Proximity loggers (contact network)
Lab sampling (infection status)

Bayesian epidemic models

Stochastic dynamical models
Flexible – may include many sources of data
Reflect underlying population characteristics
Account for missing data
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Epidemic models: history
The SIR Model

Susceptible → Infected → Removed

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

Refs: Kermack and McKendrick (1927); Bailey (1975); Becker
(1989)
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Population-based approach

Models transmission between pairs of individuals

1 Flexibility of modelling

Detailed heterogeneity
Interpretability of parameters

2 Incorporation of different types of data

Probabilities
Rates
Contact matrices

Allows modelling of highly heterogeneous populations at the
individual (farm) level
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The Model
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Continuous time stochastic mechanistic model

Individual = farm
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Infectious pressure

At any time t, susceptible j has infectious pressure exerted on
it by

all infected farms i
“Background” - eg wildlife

I

I

II

I

I
N

N

S

In a small time interval ∆t:

P(j infected) ≈ Tj ·∆t

Tj = β0 +
∑

i∈{Ii<Ij<Ni}

βij(t) +
∑

i∈{Ni<Ij<Ri}

β?ij
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The Model
Population structure

Transmission Equations

βij = q(i ; ζ)s(j ; ξ)
{
K (i , j ;ψ) + rTij p + cTij β

}
i ∈ I, j ∈ S

β∗ij = γq(i ; ζ)s(j ; ξ)K (i , j ;ψ) i ∈ N, j ∈ S

q(i ; ζ) infectivity of i
cij static contact network
K (i , j ;ψ) distance kernel

s(j ; ξ) susceptibility of j
rij dynamic contact network
ν “quarantine” parameter
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The Model
Infection times

Infection times are not directly observed

Notification time is observed
Assume a distribution fD(·) for Infection to Notification time
eg Gamma(a, b)
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Approach to inference

Construct a likelihood describing the continuous-time
stochastic epidemic, conditional on the infection times

Bayesian approach allows:
1 Coherent inclusion of Prior information

Expert opinion
Previous disease outbreaks

2 Natural framework to include unobserved data by data
augmentation MCMC methodology

Unobserved infection times
Occult infections
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Prior distributions

Gamma for rates (β ≥ 0)

Beta for probabilities (0 ≤ p ≤ 1)

Uniform for infection times (−∞ ≤ I < Tobs)

Uniform for occult status (0 or 1)

Priors chosen to agree with expert opinion and previous
knowledge of epidemics
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Influenza H5N1 in British Poultry

Extract from Great Britain Poultry
Register (May 2006)

8363 registered poulty premises after data
cleaning

Production stock only (10 types)

3 contact networks identified

Feed lorries
Slaughterhouse lorries
Company association

OS National Grid coordinates for each
premises

Legend
0 - 0.013
0.014 - 0.026
0.027 - 0.039
0.04 - 0.052
0.053 - 0.065
0.066 - 0.078
0.079 - 0.091
0.092 - 0.1
0.11 - 0.12
0.13 - 0.13
0.14 - 0.14
0.15 - 0.16
0.17 - 0.17
0.18 - 0.18
0.19 - 0.19
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The Model
Infection rate

Inter-farm transmission rate

βij = ηsp,j

(
β1C

FM
ij + β2C

SH
ij + β3C

CP
ij + β4e

−β6·ρ[i,j]
)

i ∈ I, j ∈ S

β?ij = ηsp,j

(
β5e

−β6·ρ[i,j]
)

i ∈ N, j ∈ S

Time to Notification

P(D > d) = e{−a(e
{b·d}−1)}

Time between infection and notification, D|I = N − I
where a > 0, b > 0.
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Simulated epidemic

No HPAI epidemic in the UK yet!

Simulate epidemic on our dataset

Time/days Infections
0 1

14 10
25 61
50 290
76 375

0 20 40 60

0
10

0
20

0
30

0

Time

In
di

vi
du

al
s



Motivation and background Epidemics Contact networks Results

Risk Prediction

Points of interest:

How does the parameter uncertainty change with the
amount of available data?

How does the risk to specific farms change over the course of
the epidemic?

Achieved by forward simulation of the epidemic using random
sample of parameter values from posterior

What are the locations of occult infections?

Which farms would present the greatest danger to the
population if they were to be infected?
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Farm-specific “R0”: Ri

“The expected number of farms each farm i might infect were it to
be infected (in a totally susceptible population).”

Pr(Ri > 1)
" 0.000 - 0.200
" 0.201 - 0.400
" 0.401 - 0.600
" 0.601 - 0.800
" 0.801 - 1.000

Pr(Ri > 1)
" 0.000 - 0.200
" 0.201 - 0.400
" 0.401 - 0.600
" 0.601 - 0.800
" 0.801 - 1.000

Pr(Ri > 1)
" 0.000 - 0.200
" 0.201 - 0.400
" 0.401 - 0.600
" 0.601 - 0.800
" 0.801 - 1.000

14 days 25 days 50 days

Table: Median Ri
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bTB in Possums

Questions:

How do we know where a possum lives?

What determines possum contact networks?

Contact frequency?
Duration of contact?
Age, sex , etc?

How do we infer a possum contact network?

−→ feed into epidemic model!
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The Ornstein-Uhlenbeck Process
SDE for mean-regressive diffusion process, eg Blackwell, 2008; Ramsey & Efford, 2010

Possums move according to Brownian motion

Should have a centre of attraction, eg. den, feeding sites,
“average location”

Assume independence and isotropy

Ornstein-Uhlenbeck Diffusion

dXt = α(µ− Xt)dt + βdBt

Xt – position at time t µ – “mean” location
α – drift coefficient β – diffusion coefficient
dBt – Brownian motion

Work with Alex James, Otago
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The Ornstein-Uhlenbeck Process
Solution

Solution of OU process is Gaussian!

Solution of OU process

Xi ,t+δ|Xi ,t ∼ N

(
µi + (xi ,s − µi )e−αiδ,

β2i
2αi

(
1− e−2αiδ

))
D
= lim

δ→∞
N

(
µi ,

β2i
2αi

)
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The Ornstein-Uhlenbeck Process
Remarks

Does not rely on coherent observations wrt time

Home range → define as 2-d Gaussian distribution!

May allow validation by investigation of denning sites (eg.
radio tracking)

µi are nuisance parameters – Bayesian approach integrates
this out

“Overlap” between re-constructed limiting distributions

Proportion of time i is within distance r of j ,

Tij(r) = Pr(||xi − xj || < r)

CDF of difference between two bivariate Normal rv’s.
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Possums in the Orongorongo valley

ORR valley model

log βi = b0 + β1 · sexi + β2 ·maturityi + β3 · sexi ·maturityi

4 grids, 360m x 360m: results Grid A only

Capture-recapture data, non-coherent

What is the possum home range?

Does maturity (age) and sex influence home range?

Priors non-informative
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Possums in the Orongorongo valley
Coefficient marginal posteriors
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Slight +ve effect of age

Slight evidence for females
↓ home range
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Possums in the Orongorongo valley
“Centre of attration” posterior
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Possums in the Orongorongo valley
Bayesian posterior prediction: possum home range
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Next steps...

OU process looks promising for modelling possum movements

From our data, small effect of maturity/sex

Grid A only – do we see the same effect in other grids?

Couple possum OU processes using proximity logger data

We know possums were in proximity, but must impute location
of contact

Integrate into SIR-type epidemic model
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Challenges

Partial observation of the population

Case detection

Coordinated with trapping times
Sensitivity and Specificity
Censored observations

Computational aspects:

High dimensional missing data
DA-MCMC implementation
Non-centered parameterisation

Validation of predictive distributions of epidemics
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