Source attribution modelling

Jonathan Marshall

11 June 2013

Petra Müllner Geoff Jones Alasdair Noble Martin Hazelton Simon Spencer Michael Baker Donald Campbell Phil Carter Tui Shadbolt **Nigel French** Hopkirk lab team NZFSA for funding

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

There are many potential sources of infection and pathways through which that infection may occur.

Source attribution is the process of determining which proportion of a particular disease is acquired from a given source and through a given pathway.

Knowledge of which sources are contributing the most to the disease burden allows targeting of intervention strategies.

How can we determine the origin of a human case?

- Often cases are sporadic rather than being part of outbreaks (e.g. *Campylobacter*).
- Epidemiological information associated with a case may be minimal.
- We often have no information on the exposure for sporadic cases.
- Often the only thing we have is genotype information for each case.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Seven housekeeping genes around the genome (loci).

The combination of alleles at the seven loci gives the **multilocus** sequence type.

ST	aspA	gInA	gltA	glyA	pgm	tkt	uncA
474	2	4	1	2	2	1	5
61	1	4	2	2	6	3	17
190	2	1	5	3	2	3	5
2381	175	251	216	282	359	293	102
48	2	4	1	2	7	1	5

Human MLST types

Source specific types

ST-61: *n* = 33

ST-190: *n* = 28

ST-2381: *n* = 22

Attribution using MLST

For each human ST, assign to the most likely source, given the distribution of STs on the source.

Use Bayes Theorem

$$P(\text{source} = k | \text{ST} = i) = \frac{P(\text{ST} = i | \text{source} = k)P(\text{source} = k)}{\sum_{k} P(\text{ST} = i | \text{source} = k)P(\text{source} = k)}$$

where

- P(ST = i | source = k) is the distribution of STs on each source.
- *P*(source = *k*) is the prior probability that an isolate picked at random is from source *k*.

- The simplest way to estimate P(ST = i | source = k) is to use the relative frequency r_{ik} of ST *i* on source *k*.
- The simplest way to estimate P(source = k) is to assume *apriori* that all sources are equally likely.
- This yields the Dutch model:

$$P(\text{source} = k | \text{ST} = i) = \frac{r_{ik}}{\sum_k r_{ik}}$$

Hald model (Hald et. al. 2004, Müllner et. al. 2009)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Estimates the source and isolate-specific parameters a_k and q_i by matching up the expected number of human cases of type *i* with the observed number of cases.
- We have an identifiability problem, in that we have *I* + *K* parameters to estimate, and only *I* data points (number of human isolates of each type).
- Add in some prior information to reduce this problem and fit in a Bayesian framework.

Model the sampling distribution of the allelic profiles on the sources by assuming that the observed sequences arise due to:

- Mutation, where an allele at a locus is novel.
- Migration between sources, where the allelic profile has been observed before in one of the sources, including the current one.
- **Recombination**, where the allele at a given loci has been observed before but not in this allelic profile.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let M_{jk} is the probability of sampling an allele from source k that has already been observed in source j.

Let f_{aj}^{l} be the frequency with which allele *a* has been observed at locus *l* in those genotypes sampled from source *j*.

Then, in the absense of mutation and recombination, the probability of sampling allele a at locus l in source k is

$$B_{ak}^{\prime} = \sum_{j=1}^{K} M_{jk} f_{aj}^{\prime}$$

Let μ_k be the probability of sampling an allele from source k that is a novel mutant (among all sources).

Then if we assume the loci are independent, the sampling formula for observing sequence $y = (y^1, y^2, \dots, y^7)$ on source k is

$$\phi(y|k) = \prod_{l=1}^{7} \left\{ egin{array}{cc} \mu_k & ext{if } y^l ext{ is novel,} \ (1-\mu_k) B_{y^l k}^l & ext{otherwise.} \end{array}
ight.$$

In the absense of mutation, recombination and migration, we assume that a genotype y sampled from source k will be identical to one already observed in the sample of source k.

Migration allows y to be a copy of a genotype c from a source C other than k.

Mutation and recombination mean that y may contain novel alleles, or comprise of a novel combination of existing alleles.

Let μ_k be the probability, per locus, that a genotype sampled from source k contains a novel mutant allele.

Let R_k be the probability, per locus, that a genotype sampled from source k has undergone recombination. The allele is independently sampled from other alleles observed at that locus.

The sampling formula for observing sequence $y = (y^1, y^2, \dots, y^7)$ in source k is

 $\phi(y|k) = \sum_{c} \frac{M_{Ck}}{N_{C}} \prod_{l=1}^{7} \begin{cases} \mu_{k} & \text{if } y^{l} \text{ is novel,} \\ (1-\mu_{k})R_{k}B_{y^{l}k}^{l} & \text{if } y^{l} \neq c^{l} \\ (1-\mu_{k})\left[1-R_{k}(1-B_{y^{l}k}^{l})\right] & \text{if } y^{l} = c^{l} \end{cases}$

(日) (同) (三) (三) (三) (○) (○)

ST	aspA	glnA	gltA	glyA	pgm	tkt	uncA
474	2	4	1	2	2	1	5
?	2	4	1	2	29	1	5

We have a novel allele at the pgm locus. We assume this genotype has arisen through **mutation**.

ST	aspA	glnA	gltA	glyA	pgm	tkt	uncA
474	2	4	1	2	2	1	5
?	2	4	1	2	1	1	5

The pgm allele looks familiar...

ST	aspA	gInA	gltA	glyA	pgm	tkt	uncA
45	4	7	10	4	1	7	1
3718	2	4	1	4	1	1	5

But we haven't seen this genotype before. We assume it arose through **recombination**.

ST	aspA	glnA	gltA	glyA	pgm	tkt	uncA
474	2	4	1	2	2	1	5
?	2	4	1	2	2	1	5

This is just 474 - we've seen this before, but possibly not in this source. We assume it arose through **migration**.

Let F_k be the proportion of human sequences h_i from source k.

The posterior distribution of *F*, given the probabilities μ , *M* and *R* is

$$p(F|h,\mu,M,R) \propto \prod_{i} \left[\sum_{k} F_{k} \phi(h_{i}|k) \right] p(F)$$

where p(F) is the prior distribution, where we assume each source is equally likely.

The parameters are estimated in two passes:

- The probabilities μ , M, and R are estimated from the known source cases with likelihood approximated by a leave-one-out approach.
- For each posterior sample of these, an MCMC side-chain is run to estimate the probabilities F_k .
- Within the MCMC, various Metropolis-Hastings updates are used.

Dutch, Hald, Island attribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Temporal associations: Attribution through time

- Extend existing source attribution models to be dynamic in time.
- Assume mutation, recombination, migration rates are static, as are the distribution of STs on sources.
 - Due to practicality (lack of data) may be extended later.

• Assume the probability of sources F_j may change through time.

Temporal model for F_j

Assume F_k arises from a linear model on the logit scale.

$$F_{kt} = \begin{cases} \frac{e^{-f_{kt}}}{1 + \sum_{k=1}^{K-1} e^{-f_{kt}}} & k = 1 \dots K - 1, \\ \frac{1}{1 + \sum_{k=1}^{K-1} e^{-f_{kt}}} & k = K. \end{cases}$$

where

$$f_{kt} = X_t \beta_k + e_{kt},$$

$$e_{kt} \sim \text{Normal}(\rho_k e_{k(t-1)}, \sigma_k^2).$$

- X is the design matrix, specifying covariates in time.
- β_k measures the effect of those covariates on F_k .
- ρ_k is an auto-correlation AR(1) parameter.
- σ_k^2 is the variance.

Start simple:

- Assume $X_t = 1$ for all t.
- Thus, the model represents potentially different means within each group.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Assume also that $\sigma_k^2 = \sigma^2$ for all k.
- Let t be quarters from 2005-2012.

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Cases attributed to Poultry

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Cases attributed to Cattle

Cases attributed to Sheep

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Cases attributed to Ruminants

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Migration, mutation, and recombination

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ()

- Improve time series model. e.g. investigate seasonality.
- Investigate the effect of intervention in poultry.
- Investigate temporal changes in ST distribution on sources.

・ロト・日本・モート モー うへぐ

Thanks for listening

