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@ We estimated Ry = 1.25, confidence interval (1.07,1.47).
Roberts & Nishiura (2011) PLoS One 6:€17835.
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Introduction

o Epidemic models: the SIR model with
uncertainty.

@ The Kermack-McKendrick model and
swine flu.

@ Seasonal influenza and a two-strain
model.
@ Thanks for funding to
o The Marsden Fund MAUO0809,
MAU1106
o The Health Research Council
10/754
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The SIR epidemic model - scaled time

dx
Proportions: Susceptible TS = —Roxy Infectious

dy

dt

Roxy—y
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The SIR epidemic model - scaled time

d d
Proportions: Susceptible d—); = —Roxy Infectious d—); = Roxy—y

@ An epidemic begins like y(t) = ype®0t~t when Rgxp > 1.
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The SIR epidemic model - scaled time

d d
Proportions: Susceptible d—); = —Roxy Infectious d—); = Roxy—y

@ An epidemic begins like y(t) = ype®0t~t when Rgxp > 1.

d
@ An epidemic peaks when d—); = 0 which means: Rox(t) = 1.
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The SIR epidemic model - scaled time

d d
Proportions: Susceptible d—); = —Roxy Infectious d—); = Roxy—y
@ An epidemic begins like y(t) = ype®0t~t when Rgxp > 1.
d
@ An epidemic peaks when d—); = 0 which means: Rox(t) = 1.

@ During an epidemic

2 (Rox(t) + Roy(t) ~ logx(1)) = 0
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During an epidemic
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The SIR epidemic model - scaled time

d d
Proportions: Susceptible d—); = —Roxy Infectious d—); = Roxy—y

An epidemic begins like y(t) = yoe™00t=t when Roxg > 1.

d
An epidemic peaks when d—); = 0 which means: Rox(t) = 1.

During an epidemic

2 (Rox(t) + Roy(t) ~ logx(1)) = 0

The final size, P = xp — Xo0, SOIVes

1 P

Ry is the basic reproduction number.
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The SIR model with uncertainty

@ Replace Rg with Rqg + pb.

x(t) == (Ro + pf) xy
y(t) =(Ro+pd)xy —y

@ initial conditions xp < 1 and
Yo < 1.
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The SIR model with uncertainty

@ Replace Rg with Rqg + pb.
x(t) == (Ro + pf) xy
y(t) =(Ro+ pf)xy —y

@ initial conditions xp < 1 and
Yo < 1.
e 0 €[-1,1] has pdf
U: w(d)=1/2 or
B: w(0)=k(1-6)"

where k is a normailsing constant.

We will use 8 = 1.19.

(
(0,1) (red).
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The exponential phase y(t,0) = ype(Rotrf)ot—t

@ The expected value of y(t) is

E(y) = /Q y(t,0)w(6) do

:yOeROXOt_t/ epeXOtW(e) de
Q

>1

@ Dots at means, magenta dot at
deterministic solution.

@ Parameter values Rg = 2,
p=02 x=1-1075,
yo = 1072, t=4.8

1200

w(0) ~

6
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The final size P(6)

@ The proportion infected in the
epidemic solves

0 '°g< _Px(f)> -0

@ The pdf of P is w(0)/P'(0).

Ro+pd+

@ Dots at means, magenta dot at
deterministic solution.

@ Parameter values Rg = 2,
p=02 x9=1- 1073,
yo = 1075,

e pdfs for P(#) with
w(0) ~
o U (black)
o B (blue)
o N (0,1) (green)
o N (0,3) (red).

24



Peak value distributions

@ Peak prevalence.

~—

G M0 11 1z 13 a4 15 16 17

top(0)

@ pdfs with w(0) ~ U (black); B (blue); N/ (0,1) (green); N (0, 3) (red).

@ Peak incidence.

—

B8 0 1 1z 13 1415 18

i (0)
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The Galerkin solution
@ Reminder: the SIR model

x(t)=—-Roxy  y(t)=TRoxy —y

@ Expand over 0 in orthogonal polynomials. Substitute

o0

x(8,0) =Y xi(t)oi(0)  y(t.0) = Zy, )oi(0

i=1

to obtain
> xi(0)i(0) = — (Ro+p0) > > xi(2)y;(£)¢i(0)¢5(0)
i=1 i=1 j=1

D i(0)ei(0) = = > xi(t)¢i(8) = > yi(t)¢i(0)
i=1 i=1 i=1



Expectation and inner product
@ Choose {¢;(0)} so that

E (¢i¢y) /qs, Jo/(O)w(0)db =0 if i#]
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Expectation and inner product
@ Choose {¢;(0)} so that

E(¢1)) /qs, o (O)w(6)do =0 it i#]
@ When truncated, the equations are

x¢(t) = = x.(RoA¢ + pBy) y
ve(t) =x. (RoA; + pBr)y — yi

with x = (x1,x2,...,xy)’, similarly y (prime is transpose).
The N x N matrices have components
~_E(9ig;j90) ~_ E(099i9;¢0)
Avij= —=ro5v  Bij= v
E () E (¢7)

@ The initial conditions are x(0) = xpe and y(0) = ype, with
e=(1,0,...,0).
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Polynomial bases

e If w ~ U, a uniform distribution, use Legendre polynomials:

0i(0) =P;i_1(0)  Po(0)=1 Pi(0) =06
20+ 1 0

Pg+1(9) — m@Pg(@) - mpgfl(e)

Xiu (2010) Numerical methods for stochastic computations. Princeton UP.
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Polynomial bases

e If w ~ U, a uniform distribution, use Legendre polynomials:

0i(0) =P;i_1(0)  Po(0)=1 Pi(0) =06

204+1 V4
Pei1(0) = mQPé(Q) - mpéfl(e)

e If w ~ B, a beta distribution, use Jacobi polynomials:

¢i(0)=JN0) SO0 =1 SD0)=B+1)6

20426+ 1)((+5+1
Jlgﬁ)l(e):( (e+1)(£)+(25+1) o0

(L+B)(L+B+1) (5

(1) (C+28+ 1)J€—1(9)

Xiu (2010) Numerical methods for stochastic computations. Princeton UP.
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Numerical solution: w ~ U, uniform distribution.

@ Proportion susceptible. @ Proportion infectious.

Solid lines are expected values, E(y(t)).
Dashed lines are deterministic solution, y(t,0).
Blue cloud is y(t,0), -1 <6 < 1.

Thin lines are solutions y;(t).

Parameter values: Rg =2, p=0.2, x =1—1075, yp = 107>.

12 /24



Numerical solution: w ~ B, beta distribution.

@ Proportion susceptible. @ Proportion infectious.

Solid lines are expected values, E(y(t)).

Dashed lines are deterministic solution, y(t,0).

Blue cloud is y(t,0), -1 <6 < 1.

Thin lines are solutions y;(t).

Parameter values: Rg =2, p=0.2, x =1—1075, yp = 107>.
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Some comments

@ We have replaced two equations with 2/ equations, but we
only need to solve these once.

@ The ODEs are solved numerically, but constructed analytically
via recurrence relationships. For example, if w ~ B then

E (0™2) = n+”2+61+3E(9”) if n even, and zero if n odd.

e If w~ N, a normal distribution, we use Hermite polynomials.
Convergence problems were experienced.

o Everything is deterministic.

Roberts (2013) J. Math. Biol. 66:1463-1474.
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Pandemic influenza

@ The Kermack-McKendrick model

o) = 5(t) + Rox(t) / T (= ) dr

0

x(t) = xo — I:tl/otz(u)du

@ where

Ry is the basic reproduction number

1(t) is the local incidence of infection

J(t) is the incidence of imported cases
f(7) is the probability distribution of
infection-generation intervals

x(t) and y(t) are the proportions of the
population (size ) that are susceptible or
infected (prevalence).
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Infection-generation intervals f(7)

15N SR

SEIR

T Mean = 2.8 days.
Te S.D. = 1.12 days.
Pre-infectious period
Te = 0.5 days.

Te
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Interlude: estimating Ry.

e The infection generation interval is Tg = [~ 7f(7)dT.

@ During the initial exponential phase of an epidemic
oo
RO/ e ""f(r)dr =1
0
@ For an SEIR model with T¢ = T+ T,
RGP =1+rTg+r*Te(Te — TE)
e For a fixed-period model with T¢ = Tg + T;/2

: r(Te —Te) 1,
RfIX: rlc
O " sinhr(Tg — TE)e

@ We always have 1 + rTg < RSXP < Rgx <ele
Roberts & Heesterbeek (2007) J. Math. Biol. 55:803-816.
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Pandemic forecasting

@ Curve fit to data

@ Blue: local transmission; Red: imported cases.
@ We estimated Ro = 1.25, confidence interval (1.07,1.47).
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Pandemic forecasting

o Curve fit to data @ The prediction

1400

1200

1000

800

600

@ Blue: local transmission; Red: imported cases.
@ We estimated Ro = 1.25, confidence interval (1.07,1.47).
@ Beta distribution with quartiles shaded.
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Pandemic becomes seasonal

@ The Galerkin method deals with uncertainty in parameter
estimates. The models are neither chaotic nor stochastic.

@ Projections of incidence during the exponential phase have
wide confidence limits. Prediction is very difficult, especially
about the future (Bohr attrib.).

@ Cross-immunity between influenza A subtypes is still an open
question.

T'VE GOT

A WICKED T SHOULD PROBABLY

- TELL PEOPLE T JUST
| HAVE BAD ALLERGIES.

CASE OF
PIRANHA

Dilbert.com _ DilbertCartoonist@gmail.com

19 /24



Seasonal influenza in New Zealand

4000 | 2005 2013
3500 "
= Seasonal AHIN1)
2
g SAH3N2) «
£ 3000 "B
] = A(HIN1)pdm09 "
g
E 2500 2
S
£ om0 oL o o0 e e o oz 2o -
5
z
1500
1000
500
0
9 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13
Seasonal A(HIN1)(%) 1 8 8 0 0 1 0 4 47 0 36 54 0 0 0 2 13 32 1 20 0 0 0 0
A(H3N2)(%) 83 0 3 66 99 30 99 43 52 74 33 8 68 100 91 11 8 45 1 2 1 40 74 1
B(%) 16 92 11 34 1 69 1 53 1 26 31 38 32 0 9 87 1 23 58 0 1 50 14 45
AHINT)pdm09(%) ©0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 9% 10 12 15

o Influenza

survey summary for New Zealand, 1990-2013.
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A two-subtype influenza model

@ The proportion of the population infectious:

y® =Ryx°y® —y°® s=1,2
@ The function x*(t) =1—uv*+ (1 —q) (v° — 2z°) is
the relative susceptibility of the population.
A proportion z° is specifically protected.
A proportion u® is non-specifically protected.
g = 0 for no cross-protection.
g = 1 for complete cross-protection.

Assumptions

The epidemic is confined to one season.
Neglect virus evolution within season.

No cross-subtype protection between seasons.
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Numerical solution - different immune proportions

@ y®, proportions infected. @ z°, specifically protected.

Cyan and magenta clouds are y*(t, q), z°(t,q), 0 < g < 0.5.
Blue and red clouds are y*(t, q), z°(t,q), 0.5 < g < 1.

Thin lines are solutions yf(t), z3(t).

Parameters: Ry =Ry =2, y§ = y§ = 107°, z5 =0 red,

z5 = 0.1 blue.
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Numerical solution - different initial infecteds

@ y°, proportions infected. @ z°, specifically protected.

0 5‘ 1‘0 1‘5 ZI‘J 25 0 5I 1‘0 1I5 2‘0 oy
e Colours as in previous slide.

o Parameters: RS =R =2, y§ =5 x 107>, red, y§ = 107>,
blue, z5 = z5 = 0.

Roberts (2012) ANZIAM Journal 54:108-115
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Other work

@ Hickson & Roberts (2014) How population heterogeneity in
susceptibility and infectivity influences epidemic dynamics.

J. Theor. Biol. 350:70-80.
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