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Why study bacterial phylogenetics?

I Bacteria play important roles (both
positive and negative) in the health of
humans, animals and plants.

I Many bacteria possess interesting and
experimentally accessible evolutionary
dynamics.

I Bacterial genomes are measurably
evolving over relatively short study
periods.

Drummond & Rambaut, TIEE (2003) Rainey & Travisano, Nature (1998)
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The Apparent Problem

While bacteria reproduce asexually, from a genetic standpoint they
are in fact highly promiscuous.
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So what?

Other organisms (even viruses) employ non-vertical inheritance;
why is this a show-stopper for bacterial phylogenetics?



The REAL Problem

For many bacteria, the ratio between the recombination rate and
the mutation rate is very high.

Distribution of 48 estimated bacterial r/m values
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Existing solutions

I Pre-processing of data to identify and remove non-vertically
inherited material. (eg. START: Jolley et al., 2001)

Pros Cons

• Can use standard tools for
phylogenetic inference.

• Data is being thrown away.
• Ad hoc, may bias results.

I Explicit modelling of bacterial recombination.
(eg. ClonalFrame and ClonalOrigin: Didelot et al., 2007, 2010)

Pros Cons

• Can make use of all data.
• Can infer additional
parameters such as
recombination rates.
• May yield increased
confidence in estimates

• Models can be complex,
with many parameters.
• Both computationally and
statistically challenging.
• Existing implementations
are too restrictive.
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The coalescent with gene conversion

Parameters
θ(t) Coalescence rate
ρ Conversion rate
δ Expected tract length

Wiuf, 1999; Wiuf and Hein, 2000



Approximate model

We make the following simplifying assumptions:

I Following Didelot et al., 2010, we
exclude coalescent events between
recombinant edges/lineages.

I In addition, we do not permit a site
to be affected by more than one
conversion at a time.
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Approximate model

These assumptions allow the distribution of converted sites to be
treated as a Markov chain, similar to the Sequentially Markovian
Coalescent (McVean and Cardin, 2005).

The probability P(sk |s1) evolves accoarding to[
P(sk+1 = C |s1)
P(sk+1 = C̄ |s1)

]
=

[
(1− δ−1) ρ′λT

2

δ−1 1− ρ′λT
2

] [
P(sk = C |s1)
P(sk = C̄ |s1)

]
where λT is the total edge length of the clonal frame T , δ is the
expected tract length and ρ′ is a conversion rate parameter.
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Approximate model

For a given number of expected conversions, the value of the
conversion rate parameter ρ in Didelot et al.’s model is always
lower than that of the rate parameter ρ′ in our model.
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Here λT = 1 and δ/L = 0.1.



Bayesian inference framework

We aim to perform inference by using an MCMC algorithm to
sample from the posterior

f (G , θ, µ, ρ′, δ|A) ∝ PF (A|G , µ)fCGC (G |θ, ρ′, δ)fprior(θ, µ, ρ
′, δ)

where

A is the sequence alignment,

µ are the substitution model parameters, and

G is the full sample genealogy including clonal frame T ,
recombinant edges R, infected region map M.

The genealogy density under approximate coalescent with gene
conversion can be expanded

fCGC (G |ρ′, δ, θ) = f (R|T ,M, θ)P(M|T , ρ′, δ)fC (T |θ)
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Implementation and validation

I We have implemented the MCMC algorithm as a BEAST 2
package. http://www.github.com/CompEvol/BACTER

I Primary validation involves comparing distributions of
summary statistics calculated from simulated ARGs with those
sampled via MCMC from the ARG prior fCGC (G |ρ′, δ, θ).
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I In this example we have used 5 heterochronous leaf times,
L = 104, ρ′ = 5, δ = 50 and θ = 1.
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Producing simulated sequence data

I The following network and conversion map were simulated
assuming ρ′ = 200, δ = 500 and θ = 0.01.
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I A 10kb alignment was generated by simulating evolution down
this network under Jukes-Cantor with clock rate µ = 10.

Visualization of network generated automatically from Extended Newick (Cardona et al., BMC Bioinf., 2008)

representation using IcyTree (tgvaughan.github.io/icytree).
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Network inference from simulated data
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Network inference from simulated data
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Parametric inference from simulated data
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Benefit to the inference of demographic parameters

I Relationship used by Li and Durbin, Nature (2011) to infer
human demographic history from pairs of autosomes.
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How much inference power can we gain?

Consider an alignment of two sequences of
length L. With complete linkage, the proba-
bility for the number of segregating sites under
the Jukes-Cantor substitution model is

P(∆|τ) =
1

4L

(
2

3
µτ

)∆

e−2(L−∆)µτ

in the limit τ � 1/µ.

The density of τ under the coalescent with population size
parameter θ is

P(τ |θ) =
1

θ
e−

τ
θ

Using the Jeffreys prior for θ, the posterior density becomes

P(θ|∆) =
∆(2(L−∆)µ)∆θ∆−1

(2(L−∆)µθ + 1)∆+1



How much inference power can we gain?

Consider an alignment of two sequences of
length L. With complete linkage, the proba-
bility for the number of segregating sites under
the Jukes-Cantor substitution model is

P(∆|τ) =
1

4L

(
2

3
µτ

)∆

e−2(L−∆)µτ

in the limit τ � 1/µ.
The density of τ under the coalescent with population size
parameter θ is

P(τ |θ) =
1

θ
e−

τ
θ

Using the Jeffreys prior for θ, the posterior density becomes

P(θ|∆) =
∆(2(L−∆)µ)∆θ∆−1

(2(L−∆)µθ + 1)∆+1



How much inference power can we gain?

Consider an alignment of two sequences of
length L. With complete linkage, the proba-
bility for the number of segregating sites under
the Jukes-Cantor substitution model is

P(∆|τ) =
1

4L

(
2

3
µτ

)∆

e−2(L−∆)µτ

in the limit τ � 1/µ.
The density of τ under the coalescent with population size
parameter θ is

P(τ |θ) =
1

θ
e−

τ
θ

Using the Jeffreys prior for θ, the posterior density becomes

P(θ|∆) =
∆(2(L−∆)µ)∆θ∆−1

(2(L−∆)µθ + 1)∆+1



How much inference power can we gain?
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How much inference power can we gain?

Now assume the sequence is divided into n loci
each of length L/n, and with its own τi and ∆i .
The posterior density then becomes

P(θ|~∆) =
θ−1

Z

n∏
i=1

( 2
3µ)∆i (∆i !)θ

∆i

(2(L/n −∆i )µθ + 1)∆i+1

Unlike the single locus case, the normalizing constant Z and hence
the density itself must be evaluated numerically.

I Can get a rough idea of the effect of increasing homologous
conversion rate by fixing ∆i = ∆/n and varying n.
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How much inference power can we gain?
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How much inference power can we gain?
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Simulation study

I Performed joint inference of ARG and θ from 5 datasets for 4
distinct values of the conversion rate parameter ρ′.
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Campylobacter genomic data

I Genus of spiral-shaped bacteria
responsible for the majority of
gastroenteritis in the developed world.

I Often isolated from feces of domestic
farm animals and environmental
sources in NZ.

I Full genomes sequenced from 60 C. coli and C. jejuni isolates
sampled from a variety of sources in NZ between 2005 and
2009.

I Inference performed on alignment of contiguous 16kb region
between the genes aspA and uncA (inclusive).
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Campylobacter dataset analysis results

I Analyzed alignment assuming a strict clock, a GTR+γ
substitution model and ρ′/µ = 3 (motivated by
Fearnhead et al., JME, 2012).
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overlap” assumption of the model.
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Campylobacter dataset analysis results

I Known gene conversion recovered: incorporation of C. coli
uncA gene by ST61 C. jejuni strain (and a close relative) as
described by Wilson et al., MBE, 2009.



Summary

I Have implemented a scheme for Bayesian inference under an
approximate coalescent with gene conversion model (inspired
by Didelot et al., 2010) as a BEAST 2 package.

I Scheme is capable of recovering model parameters (ρ′, δ, θ,
and µ) from sequence alignments, as well as jointly inferring
the sites affected by conversion and the ARG.

I Simulated data analyses confirm that the ability of our
scheme to estimate population size improves with increasing
conversion rates.

I The assumption that each site is affected by at most one
conversion seems to be violated in the case of the available
Campylobacter data.
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Future goals

I Relax the non-overlapping conversion assumption.
(In progress.)

I Perform a full assessment of the ability the inference scheme
to correctly infer unknowns in the presence of model
misspecification. (In progress.)

I Investigate parametric and non-parametric inference of
demographic history dynamics.

BEAST 2 package source code

The BEAST 2 package is still in development, but the source code
is available at http://www.github.com/CompEvol/BACTER.



Future goals

I Relax the non-overlapping conversion assumption.
(In progress.)

I Perform a full assessment of the ability the inference scheme
to correctly infer unknowns in the presence of model
misspecification. (In progress.)

I Investigate parametric and non-parametric inference of
demographic history dynamics.

BEAST 2 package source code

The BEAST 2 package is still in development, but the source code
is available at http://www.github.com/CompEvol/BACTER.



Future goals

I Relax the non-overlapping conversion assumption.
(In progress.)

I Perform a full assessment of the ability the inference scheme
to correctly infer unknowns in the presence of model
misspecification. (In progress.)

I Investigate parametric and non-parametric inference of
demographic history dynamics.

BEAST 2 package source code

The BEAST 2 package is still in development, but the source code
is available at http://www.github.com/CompEvol/BACTER.



Future goals

I Relax the non-overlapping conversion assumption.
(In progress.)

I Perform a full assessment of the ability the inference scheme
to correctly infer unknowns in the presence of model
misspecification. (In progress.)

I Investigate parametric and non-parametric inference of
demographic history dynamics.

BEAST 2 package source code

The BEAST 2 package is still in development, but the source code
is available at http://www.github.com/CompEvol/BACTER.



Acknowledgements

I David Welch

I Patrick Biggs


	Introduction
	Motivation
	Bacterial recombination
	Existing solutions

	Model and Inference Framework
	Coalescent with gene conversion
	Approximate model
	Bayesian inference

	Simulated data analysis
	Producing simulated sequence data
	Inference from simulated data

	Population size inference
	Additional inference power
	Verification via simulation study

	Campylobacter data analysis
	The data
	Preliminary analysis results

	Conclusions

