Mucosal associated invariant T cells: a new player in antibacterial immunity

James Ussher

Te Whare Wānanga o Otāgo

Increasing incidence of serious infectious diseases and inequalities in New Zealand: a national epidemiological study

Michael G Baker, LucyTelfar Barnard, Amanda Kvalsvig, Ayesha Verrall, Jane Zhang, Michael Keall, Nick Wilson, Teresa Wall, Philippa Howden-Chapman

Lancet 2012; 379: 1112-19

Department of Public Health, University of Otago, Wellington, New Zealand

"Infectious diseases made the largest contribution to hospital admissions of any cause"

"increased from 20.5% of acute admissions in 1989-93, to 26.6% in 2004-2008"

"clear ethnic and social inequalities in infectious disease risk"

The growing problem of antimicrobial resistance

"The problem is so serious that it threatens the achievements of modern medicine. A post-antibiotic era — in which common infections and minor injuries can kill—is a very real possibility for the 21st century."

Mucosal surfaces – the central battleground

- Of the top 10 causes of infectious mortality worldwide,
 9 are primarily transmitted via a mucosal route
 - >11 million deaths annually
- Commensal flora
- Constant environmental exposure to pathogens

Mucosal Associated Invariant T (MAIT) cells

- Abundant "innate-like" T cell population
- Found at mucosal surfaces
- Enriched in liver
- In blood, ~10% of CD8⁺ T cell population
 ~100x more common than iNKT cells
- Rare in mice
- Semi-invariant TCR (V α 7.2-J α 33)
- Restricted by MHC related protein 1 (MR1)
 - Non-classical MHC class lb protein
 - Non-polymorphic
 - Evolutionarily conserved
- Phenotype
 - Effector memory
 - CCR2⁺, CCR5⁺, CXCR6⁺
 - CD161⁺⁺ IL23R⁺ CCR6⁺ RORγt⁺
 - IL17, IL22, IFN γ , TNF α

LN

Intestine

10-1

Liver

Specific activation of MAIT cells by bacteria

Activated by: Escherichia coli Klebsiella pneumoniae Salmonella spp. Pseudomonas aeruginosa Francisella tularensis

Staphylococcus aureus Staphylococcus epidermidis Mycobacterium tuberculosis Mycobacterium abscessus Lactobacillus acidophilus

Candida albicans Candida glabrata Saccharomyces cerevisiae

<u>Not activated by:</u> *Streptococcus pyogenes Enterococcus faecalis*

<u>MR1 binds vitamin B</u> <u>metabolites</u>

- Activating ligand in supernatant of *Salmonella* sp. culture
- Intermediate of riboflavin biosynthesis

Kjer-Nielsen, et al, Nature 2012

MAIT cells protect against bacterial infection *in vivo*: mice

Intraperitoneal injection of Iuminescent *Klebsiella pneumoniae*

CFU in spleen post aerosol challenge with BCG

Georgel et al. Mol Immunol 2011

Chua et al, Infect Immun 2012

MAIT cells protect against bacterial infection *in vivo*: humans

Grimaldi et al, Intensive Care Med 2013

Persistent loss of MAIT cells from the blood in HIV despite HAART

HC = Healthy control

Cosgrove, Ussher et al, Blood 2013

- Probable frequent exposure
 - Ligand is soluble and present in bacterial culture supernatant
- Inappropriate activation could cause immunopathology

- Probable frequent exposure
 - Ligand is soluble and present in bacterial culture supernatant
- Inappropriate activation could cause immunopathology

<u>Cytokine-dependent activation of MAIT</u> <u>cells: expression of IL-18 receptor</u>

Ussher, Bilton et al, Euro J Immunol, 2014

<u>Cytokine-dependent activation of MAIT</u> cells: IL-12+IL-18 specifically induces IFNy

PBMCs, overnight incubation

Ussher, Bilton et al, Euro J Immunol, 2014

<u>How do IL-12+IL-18 contribute to MAIT</u> <u>cell activation in bacterial infection?</u>

<u>Whole bacteria, but not supernatant or cell</u> <u>lysate, are potent activators of MAIT cells</u>

<u>Whole bacteria, but not supernatant or cell</u> <u>lysate, are potent activators of MAIT cells</u>

<u>Whole bacteria, but not supernatant or cell</u> <u>lysate, are potent activators of MAIT cells</u>

Is surface expression of MR1 limiting?

Reantragoon et al, J Exp Med 2012

Surface antibody stain

Is surface expression of MR1 limiting?

Reantragoon et al, J Exp Med 2012

Is surface expression of MR1 limiting?

Reantragoon et al, J Exp Med 2012

MR1 surface expression in THP1s is tightly regulated, even when over expressed

Internal stain

<u>Small increase in MR1 surface expression</u> <u>after treatment with *E. coli*</u>

 α MR1

Surface antibody stain

Increased trafficking of MR1 to the cell surface after *E. coli* treatment

Fluorescently labeled α MR1 added to culture for final 4 hours

<u>Activation induces trafficking of MR1 to the</u> <u>cell surface</u>

Isotype Untreated TLR2 agonist 6 hours TLR2 agonist overnight

4 hour antibody capture assay

<u>NFκB signaling is required for activation-</u> induced trafficking of MR1 to the cell surface

Isotype

Untreated

E. coli 6 hours DMSO ON, *E. coli* 6 hours IKK inhib. VII ON, *E. coli* 6 hours

Time of APC exposure to bacteria

Overnight

<u>Supernatant: MR1 over-expression but not</u> incubation time enhances MAIT cell activation

Supernatant: MR1 over-expression but not incubation time enhances MAIT cell activation

MR1 limiting No increase with time

Intact *E. coli*: Prolonged incubation but not MR1 expression enhances MAIT cell activation

Intact *E. coli*: Prolonged incubation but not MR1 expression enhances MAIT cell activation

<u>NFκB signaling in the APC is required for</u> <u>MR1-mediated MAIT cell activation</u>

Effect of pre-activation of THP1s on early MR1-mediated MAIT cell activation

<u>Pre-activation of THP1s with agonists to TLRs 1, 2, or 6</u> <u>enhances early MR1-mediated MAIT cell activation</u>

Pre-treatment with IFN γ or IFN α also enhances early MR1-mediated MAIT cell activation

+/- interferon- α 1000U/ml overnight

<u>NF κ B signaling in monocyte-derived macrophages</u> (MoM ϕ) is required for MAIT cell activation

Monocyte-derived macrophages

Robust early MR1-mediated activation

<u>with MoM ϕ </u>

Monocyte-derived macrophages

<u>Pre-activation of MoM¢ fails to enhance</u> <u>MR1-mediated MAIT cell activation</u>

<u>MR1-mediated MAIT cell activation is negatively</u> <u>regulated by endotoxin tolerance</u>

Summary (1)

- Efficient MR1-mediated activation requires APC activation
- LPS-induced tolerance suppresses MR1mediated activation
- MR1-mediated MAIT cell activation is tightly regulated

MR1-dependent

Summary (2)

- Two mechanisms of activation:
 - MR1 (TCR dependent)
 - IL-12+IL-18 (TCR independent)
- Whole bacteria, but not supernatant or cell lysate, are potent activators of MAIT cells via MR1
 - Presentation of supernatant dependent upon surface expression of MR1
 - Presentation of intact bacteria dependent upon time but not level of MR1 expression
- Efficient MR1-mediated activation requires APC activation

– NFkB-dependent

- LPS-induced tolerance suppresses MR1-mediated activation
- MR1-mediated MAIT cell activation is tightly regulated

Acknowledgements

University of Oxford

Paul Klenerman

Chris Willberg

Mathew Bilton

Ayako Kurioka

Kerstin Ruustal

Alexander Wilson

Rodney Phillips

Washington University in St. Louis Ted H. Hansen

Funding Bodies

Wellcome Trust

James Martin School of the 21st Century

NIHR Biomedical Research Centre Programme

Oxford Dominions Trust

National Institute for Health Research

Is the MAIT cell population perturbed in HIV infection?

MAIT cells in HIV infection

- Early stage HIV infection
 - SPARTAC baseline samples
 - Median CD4 count = 603 cells/ μ l (475, 774)
 - Median viral load = $4.73 \log_{10} \text{ copies/ml} (3.89, 5.19)$
- Chronic untreated HIV infection
 - Kings College London Infectious Diseases Biobank
 - Median CD4 count = 250 cells/ μ l (207, 326)
 - Median viral load = $4.22 \log_{10} \text{ copies/ml} (3.99, 4.94)$

MAIT cells are lost from the blood in HIV

HC = Healthy control

Cosgrove, Ussher et al, Blood 2013

MAIT cells are lost from the blood in HIV

Canonical TCR V α 7.2-J α 33 Normalised against C α

MAIT cells are not enriched in colon in HIV

CD3+CD8+MDR1++

12 HIV⁺ patientsMacroscopically normal colon7 microscopic colitis

Healthy control

12 age-matched controls Non-inflamed normal colon

Cosgrove, Ussher et al, Blood 2013

MAIT cells are not enriched in colon in HIV

HC = Healthy control

Cosgrove, Ussher et al, Blood 2013

MAIT cells do not recover with HAART

- Swiss HIV cohort study
 - 30 patients
 - Pre-HAART and 1 and 2 years on HAART
 - Fully suppressed viral load

What is the mechanism of MAIT cell loss in HIV infection?

HIV does not preferentially infect MAIT cells

Infected with JR-CSF strain

- PBMCs from healthy subjects
- Activated for 3 days
 - PHA, IL2 and IL7
- Infected with HIV at MOI 10
 - CCR5-tropic virus (JR-CSF)
 - CXCR4 tropic virus (MN)
- p24 detected at days 6 and 9

HIV does not preferentially kill MAIT cells

Ratio to frequency of population in uninfected culture

- PBMCs from healthy subjects
- Activated for 3 days
 - PHA, IL2 and IL7
- Infected with HIV at MOI 10
 - CCR5-tropic virus (JR-CSF)
 - CXCR4 tropic virus (MN)
- p24 detected at days 6 and 9

Bacterial lipopolysaccharide is detectable in the lamina propria in HIV infection

Lipopolysaccharide

Healthy control

Cosgrove, Ussher et al, Blood 2013

HIV+

E. coli induces apoptosis of MAIT cells in vitro

Cosgrove, Ussher et al, Blood 2013

Blocking MR1 inhibits E. coli-induced apoptosis

Circulating blood

Summary (1)

- MAIT cells are lost from the blood early in HIV infection
- Not enriched in the colon
- Fail to recover with HAART
- Activation induced cell death potential mechanism of loss
 - Evidence of microbial translocation in vivo
 - MR1-dependent cell death *in vitro* following activation by *E. coli*
- Potential implications for control of bacterial infections
 - Mycobacterium tuberculosis
 - Non-typhoidal *Salmonella* spp.
 - Invasive pneumococcal disease
- Reconstitution potential therapeutic target