

CANCER IN MEAT WORKERS: A ROLE FOR INFECTIOUS ORGANISMS

<u>McLean D¹</u>, Leblanc-Maridor M¹, Hall R², Ren X², Brooks C¹, French N³, Pearce N^{1,4}, Douwes J¹.

¹ Centre for Public Health Research, Massey University.

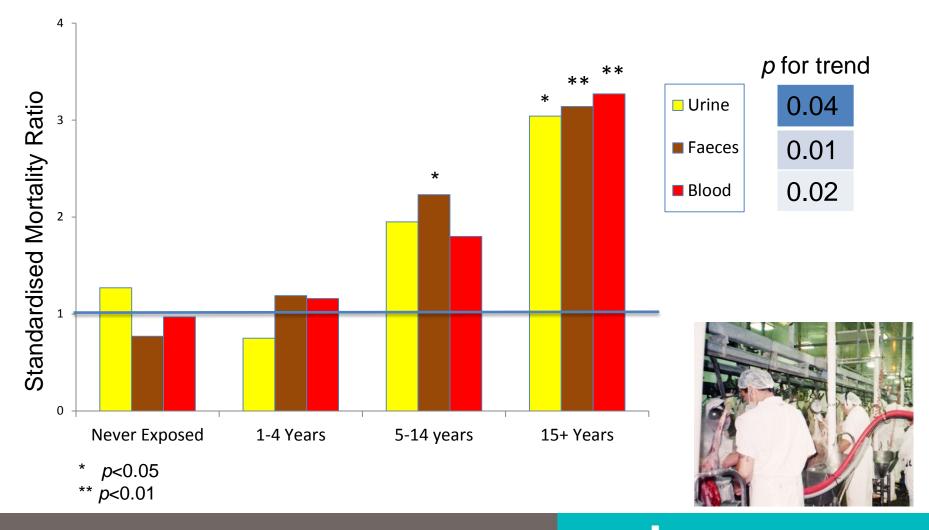
² Institute of Environmental Science and Research (ESR), National Centre for Biosecurity and Infectious Disease, Wallaceville.

³ Institute of Veterinary, Animal and Biomedical Sciences, Massey University

⁴ London School of Hygiene and Tropical Medicine, UK.

MORTALITY AND CANCER INCIDENCE IN NZ MEAT WORKERS. MCLEAN *et al.* Occup Environ Med 2004;61:541-7

Cause of death (ICD-9)	Observed	Expected	SMR	95% CI
All Causes	227	203.6	1.12	0.98 - 1.27
All Cancer (140-208)	69	61.4	1.12	0.88 - 1.42
Lung (162)	23	12.9	1.79	1.13 – 2.68
Haematologic (200-208)	6	6.3	0.96	0.35 – 2.09


(n = 6, 647)

Lung cancer mortality by employment duration in selected biological exposure categories

CANCER IN MEAT WORKERS: A ROLE FOR INFECTIOUS ORGANISMS

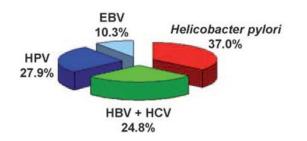
Conr Centre for PUBLIC HEALTH RESEARCH

OVERALL CONCLUSIONS

Significant excess mortality from lung cancer.

The excess was associated most strongly with increasing duration of exposure to animal urine/faeces/blood.

The excess is greater than could be attributed to smoking.



CURRENT THEORIES ON CAUSATION

A **biological** exposure, although specific causal agents have not been identified.

Cancers due to 5 infections constitute 18.5% of total cancer incidence in

Another strong possibility is **chronic antigenic stimulation**.

CANCER IN MEAT WORKERS: A ROLE FOR INFECTIOUS ORGANISMS

humans.

MEAT WORKERS STUDY METHODS

Personal **bioaerosol** samples to measure:

Protein levels as a proxy for chronic antigenic stimulation.

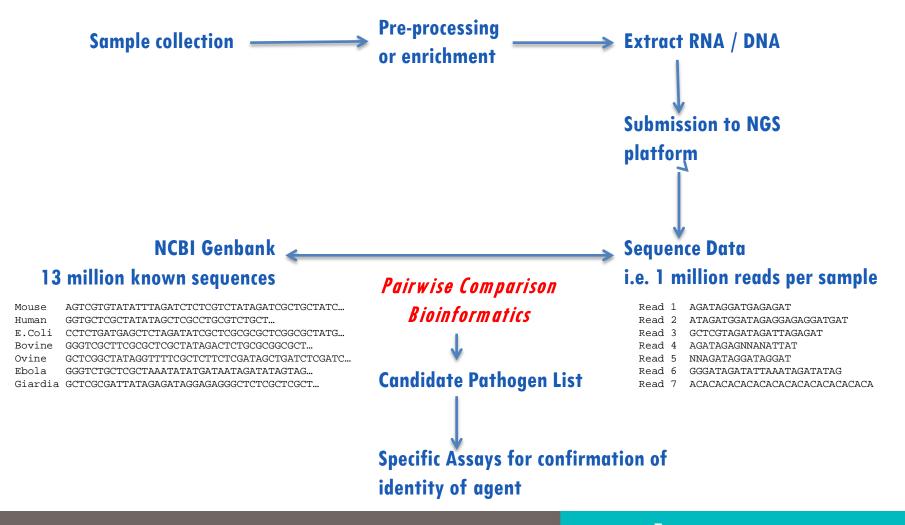
Urine, blood and faecal markers.

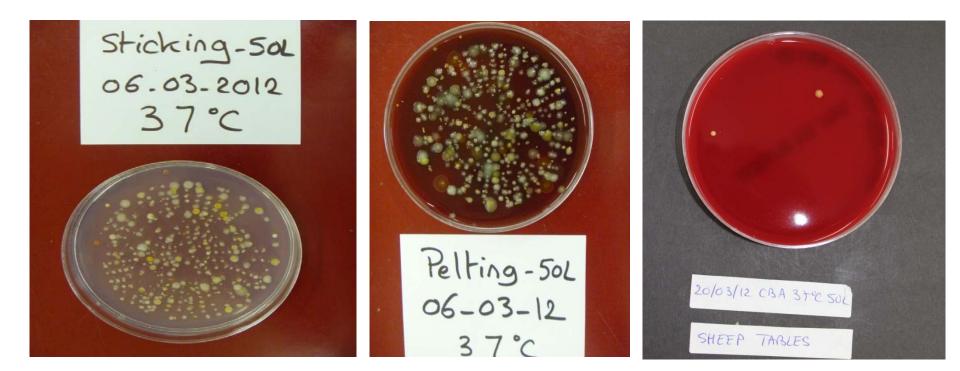
Mutagenicity of the bioaerosols in vitro.

Bacterial and **viral** pathogens using culture methods, next-generation sequencing and specific PCR analysis.

Blood and **sputum** samples for evidence of past infection and current exposure.

Repeat **epidemiological analysis on cohort** using refined exposure estimates.


MEAT WORKERS STUDY METHODS


PATHOGEN DISCOVERY USING DEEP-SEQUENCING

RESULTS: VIABLE BACTERIAL CULTURE

CANCER IN MEAT WORKERS: A ROLE FOR INFECTIOUS ORGANISMS

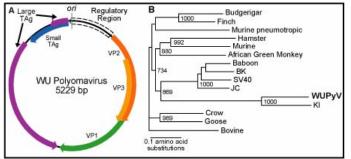
UNIVERSITY OF NEW ZEALAND

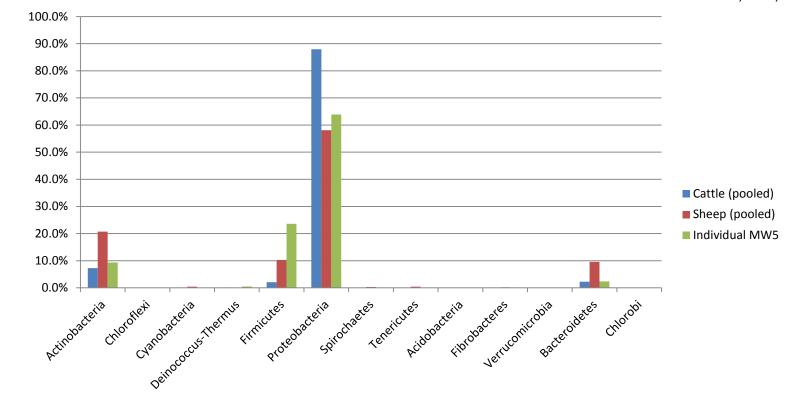
RESULTS: NGS ON POOLED PERSONAL SAMPLES

Bacterial species made up the majority of sequences identified.

Bovine and Ovine sequences detected, confirmed by real-time PCR detection of the cytochrome b gene.

Human viral sequences detected, confirmed by specific PCR on the amplified samples: HPV – 120 WU PyV




Figure 1. A. Genomic organization of WUV. B. Phylogenetic analysis of VP1 capsid protein

Bioaerosol bacterial *de novo* metagenome of personal air samples (for assembled contigs)

Number of sequence reads Cattle 83,536,320 Sheep 62,929,646 MW5 72,680,960

CANCER IN MEAT WORKERS: A ROLE FOR INFECTIOUS ORGANISMS

Proportion of bacterial contigs

CONCLUSIONS

- Full-shift personal samples collect insufficient genetic material for NGS, so have pooled samples and done bulk sampling using the SASS 3100.
- Have detected:
 - Mostly bacterial sequences.
 - Human, bovine and ovine DNA.
 - Numerous retroviruses, but probably endogenous retroviral sequences from the host genome.
 - WU PyV and HPV-120.
- Beginning to identify contrast in microbial composition of different environments for epidemiological analyses.

