Epidemiological and evolutionary studies on STEC O157 and O26 in cattle and humans in New Zealand –

A summary of findings from PhD and Postdoc research studies

Presented at STEC workshop
Massey University, Palmerston North
15 Dec 2015
PhD research studies (12–13 min)

1) Nationwide prevalence study – Cross-sectional study (2009 – 2011)

2) Transport & lairage study in bobby calves – Cohort study (2010)

3) Source attribution study in humans – Case-control study (2011–2012)

4) Molecular study on bovine and human STEC O157 (2013)

Postdoc research (7 min)

Nationwide prevalence study on STEC O157 and O26

Research question: What is prevalence of STEC O157 and O26 in NZ slaughter cattle population? (incl. dairy, beef, adult cattle, bobby calves)

Sample collection

- 4x cattle slaughter plants (2x NI, 2x SI)
- Repeated visits over 2 years
 - Fortnightly (calves)
 - Monthly (adult cattle)

Calves

\[n = 695 \]

Adult cattle

\[n = 895 \]
Origin of animals (1,009 different farms)

695 calves (566 farms) 895 adult cattle (536 farms)
Sample testing

Real-time PCR → Culture isolation → Molecular analysis

Results

<table>
<thead>
<tr>
<th></th>
<th>Serogroup</th>
<th>Rt PCR +ve</th>
<th>Culture +ve</th>
<th>STEC</th>
<th>H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves</td>
<td>O157</td>
<td>23.5% (163/695)</td>
<td>3.2% (22/695)</td>
<td>2.3% (16/695)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>O26</td>
<td>33.2% (231/695)</td>
<td>8.3% (58/695)</td>
<td>3.9% (27/695)</td>
<td></td>
</tr>
<tr>
<td>Adult cattle</td>
<td>O157</td>
<td>7.0% (63/895)</td>
<td>2.5% (22/895)</td>
<td>1.6% (14/895)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>O26</td>
<td>7.6% (68/895)</td>
<td>3.2% (29/895)</td>
<td>0.4% (4/895)</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions of nationwide prevalence study

Animal-level

• Prevalence of shedding STEC in calves >> adult cattle ($P < 0.001$)

 6.0% vs. 1.8%

 (95% CI 4.4%–8.1%) (95% CI 1.1%–3.0%)

• Prevalence of shedding STEC O26 > O157 in calves ($P = 0.121$)

• Animals rt PCR +ve for one serogroup more likely to be +ve for other

Farm-level

• STEC+ve: 4.9% all farms (49/1,009; 95% CI 3.6%–6.4%)

 2.8% beef farms (10/354; 95% CI 1.4%–5.3%)

 6.0% dairy farms (39/655; 95% CI 4.3%–8.1%)

Jaros et al. *Epidemiol Infect* 2016 (accepted)

Nationwide prevalence and risk factors for faecal carriage of *Escherichia coli* O157 and O26 in very young calves and adult cattle at slaughter in New Zealand
Transport & lairage study in bobby calves

Research question: What are the risk factors associated with high prevalence of STEC O157 and O26 in/on bobby calves at slaughter, including the impact of transportation and lairage?

Waikato region, 3 locations
Pre-selected 3 dairy farms/location, pre-tested →
1x ‘high’ risk farm
1x ‘low’ risk farm

<table>
<thead>
<tr>
<th>High risk</th>
<th>Low risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Transportation: (< 2 h)

Lairage at slaughter plant

Sample collection

Post-slaughter

On-farm

On-plant

Hide

Pre-interv.

Post-interv.
Results

3x runs, in total 60 calves followed as cohorts from farm to post-slaughter. Samples processed: Real time PCR → Culture isolation → Molecular analysis

<table>
<thead>
<tr>
<th>Samples (n)</th>
<th>Transport and lairage</th>
<th>Post-slaughter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-farm</td>
<td>On-plant (end of lairage)</td>
</tr>
<tr>
<td>Samples (n)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Real time PCR +ve</td>
<td>O157</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>O26</td>
<td>37</td>
</tr>
<tr>
<td>Culture +ve</td>
<td>O157</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>O26</td>
<td>19</td>
</tr>
</tbody>
</table>
Results – genotype diversity

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Risk type of farm</th>
<th>On-farm</th>
<th>On-plant</th>
<th>Hide</th>
<th>Pre-int.</th>
<th>Post-int.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>7</td>
<td></td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>3</td>
<td>21*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>21*</td>
<td>21*</td>
<td>18*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>21*</td>
<td>15*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>21*</td>
<td>17*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>1</td>
<td></td>
<td>17*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td>9*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td>20*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td>9*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td></td>
<td></td>
<td>20*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>13*</td>
<td>4</td>
<td>12*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>14*</td>
<td>14*</td>
<td>14*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>12*</td>
<td></td>
<td>20*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>14*</td>
<td>10*</td>
<td>9*</td>
<td>20*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>14*</td>
<td>10*</td>
<td>20*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>10*</td>
<td>9*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>14*</td>
<td>10*</td>
<td>12*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td></td>
<td></td>
<td>9*</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

O157

O26

1. run

2. run

3. run

1. run

2. run

3. run
Conclusions of transport & lairage study in bobby calves

- Little evidence for transmission of infection during transport and lairage
- Increased cross-contamination of hides and carcases from high to low risk calves
- No increased residual contamination on carcases at pre-boning stage
- Calves rt PCR +ve on-plant more likely to be +ve on-farm or originated from a high-risk farm

Jaros et al. 2016 (in preparation)

The effect of transportation and lairage on faecal shedding and carcass contamination with *Escherichia coli* O157 and O26 in very young calves in New Zealand
Source attribution study in humans

Research question: What are the risk factors associated with sporadic STEC infections in New Zealand?

Methods
- Nationwide prospective case-control study
- Expected ~150 cases of STEC
- Random sampling of 506 controls (1:3 case-control ratio)
- Questionnaire (D7, Q42)
Results – Age and spatial distribution of cases and controls

113 STEC cases (52.2% male)
506 controls (42.9% male)
Results – Identified risk factors

- Other family member contact with animals, Age 0-4
- Other family member contact with animals, Age 5-19
- Other family member contact with animals, Age >19
- Contact with recreational waters
- Travelled to areas in NZ with interrupted water supply
- Contact with animal manure
- Beef livestock present on meshblock
- Eating raw vegetables
- Visiting childcare/kindergarten/school
- Handling raw offal
- Drinking refrigerated fruitjuice from supermarket

* Water supply to home from bore/spring or creek/stream
 * Contact with children wearing nappies
 * Dining outside home
 * Eating seafood
 * Taking antacids

* Confounding variables
Conclusions of source attribution study in humans

- Children 0–4 years-old at higher risk
- Environmental and animal contacts, but not food, as significant exposure pathways
- Strong indications that dairy and beef cattle are most important sources of STEC
- Increased relative risks of STEC infections in Northland, Waikato, Taranaki, Canterbury, and Southland

Jaros et al. BMC Infect Dis 2013, 13:450

A prospective case–control and molecular epidemiological study of human cases of Shiga toxin-producing *Escherichia coli* in New Zealand
Molecular study on bovine and human STEC O157

Research question: What are the differences between bovine and human isolates?

Methods

• Isolates
 40 bovine STEC O157 isolates (Prevalence study + other study)

• Molecular subtyping
 Pulsed-Field Gel Electrophoresis (PFGE)
 Stx-encoding Bacteriophage Insertion typing (SBI)
Results – Between-island comparisons

Dominant SBI types

- **AY2a**
- **WY12a**
- **ASY2c/SY2c**
- **Other**

Bovine NI
(n = 32)

- AY2a: 49 (18%)
- WY12a: 41 (15%)
- ASY2c/SY2c: 9 (11%)
- Other: 175 (63%)

Bovine SI
(n = 8)

- P < 0.001 (Fisher’s exact)

Human NI
(n = 278)

- Other: 5% (5%)

Human SI
(n = 85)

- Other: 7% (7%)

P < 0.001 (Chi-square)
Results – International comparison of SBI genotypes

Mellor et al. AEM, 2013
Conclusions of molecular study on STEC O157

- Geographical distinction between NI and SI O157 isolates (bovine and human)

- Strong indication of localised transmission between both populations

- Distinct geographic divergence of genotypes at international level, suggesting historic introduction of STEC O157 genotypes into NZ

Geographic divergence of bovine and human Shiga toxin-producing Escherichia coli O157:H7 genotypes, New Zealand
Evolutionary study on bovine and human STEC O157

Research questions:

• When was O157 introduced into NZ?
• How often?
• How does that relate to the cattle population in NZ?
• What are the implications for biosecurity and public health?
Methodology

- 144 STEC O157 isolates, 2004–2014
 - 67 bovine
 - 77 human
- Selection of isolates
 - SBI typing data or PFGE profiles
 - Island of origin
 - Year of isolation

1x dominant SBI type / host / island / year
1x other SBI types

- Whole genome sequencing
Preliminary results

Core SNPs

- Used for phylogenetic analysis
- Core SNPs
 Single nucleotide polymorphisms shared by all organisms of interest
- Reads of 144 genomes compared with EDL933, 3,981 core SNPs identified
- NeighborNet tree based on concatenated core SNPs
Preliminary results

BEAST analysis
(Bayesian Evolutionary Analysis Sampling Trees)

- To study evolutionary history
- GMRF model using 3,981 core SNPs
- Phylogenetic tree with predicted years of common ancestors

![Phylogenetic tree with predicted years of common ancestors](image)

- **ASY2c/SY2c**
 - 1969 (95% HPD 1950–1984)
 - 1999 (95% HPD 1997–2001)

- **AY2a**
 - 1978 (95% HPD 1971–1985)

- **WY12a**
 - 1848 (95% HPD 1821–1872)

FigTree software
Cattle importations into New Zealand

Quantification of historical livestock importations into New Zealand, 1860-1979

Ancestor strains of STEC O157

1969: ASY2c/SY2c
1978: AY2a
Bacterial population sizes of dominant SBI lineages

- WY12a
- AY2a
- ASY2c/SY2c

Log scale graphs showing the population sizes over time.
Bacterial population sizes of dominant SBI lineages

Number of dairy cows

- **STEC O157 case**

Dairy herds

- Increase of stocking density by 28%
 - Density associated with enhanced pathogen transmission
 - Increase in bacterial populations as number of host increases

Source: NZ Dairy Statistics 2013/14, LIC & Dairy NZ, Hamilton, NZ
Summarising comments on evolutionary study

- Preliminary results indicate historic introduction of ancestral strains
 - livestock importations
 - people

- Unique island ecosystem in New Zealand
 - population biology
 - evolution of pathogens
 - low diversity and unique genotypes of pathogens

- Importance of biosecurity measures
Massey University
Nigel French
Patrick Biggs
Deborah Prattley
Jonathan Marshall
Samuel Bloomfield
Angela Reynolds
Anne Midwinter
Lynn Rogers
Julie Collins-Emerson

International collaborators/contributors
Thomas Besser (WSU, USA)
Smriti Shringi (WSU, USA)
Kari Gobius (CSIRO, AU)
Glen Mellor (CSIRO, AU)

Other NZ contributors
Michael Baker
PHUs and staff
Slaughter plants and staff
Dairy farmers
Transport companies and staff

MPI
Donald Campbell
Steve Hathaway
Gail Duncan

Funding

Ministry for Primary Industries
Manatū Ahu Matua

OIE Collaborating Centre for Veterinary Epidemiology and Public Health

mEpiLab
Publications

• Jaros et al. 2016 (in preparation)
 Genomic epidemiology of bovine and human *Escherichia coli* O157:H7 in New Zealand

• Jaros et al. 2016 (in preparation)
 The effect of transportation and lairage on faecal shedding and carcass contamination with *Escherichia coli* O157 and O26 in very young calves in New Zealand

• Jaros et al. *Epidemiol Infect* 2016 (accepted)
 Nationwide prevalence and risk factors for faecal carriage of *Escherichia coli* O157 and O26 in very young calves and adult cattle at slaughter in New Zealand

 Geographic divergence of bovine and human Shiga toxin-producing *Escherichia coli* O157:H7 genotypes, New Zealand

• Jaros et al. *BMC Infect Dis* 2013, 13:450
 A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing *Escherichia coli* in New Zealand