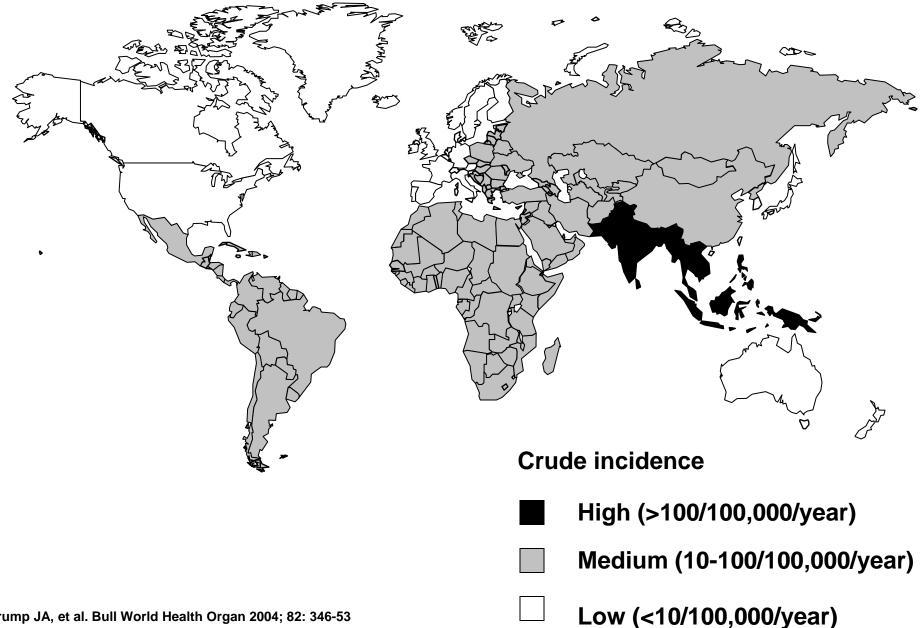
Invasive Salmonella infections in Africa

John A. Crump McKinlay Professor of Global Health Co-Director, Centre for International Health

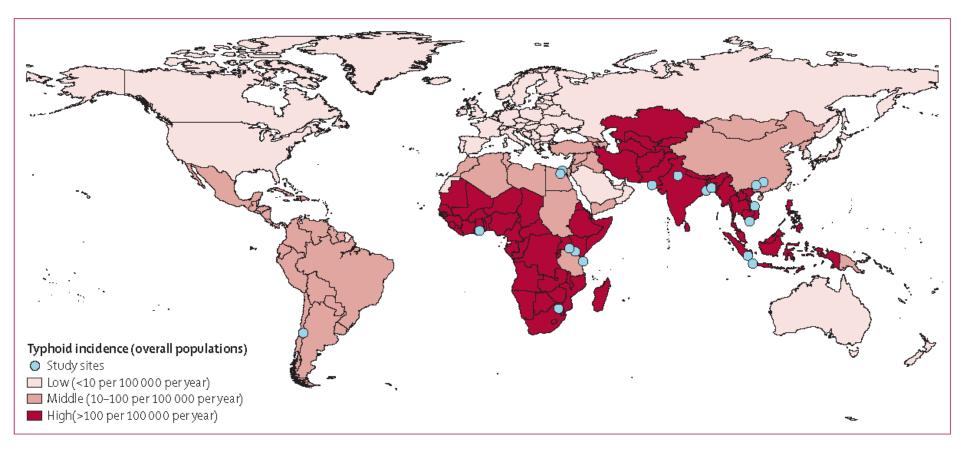
One Health Aotearoa symposium 22 March 2016

Overview

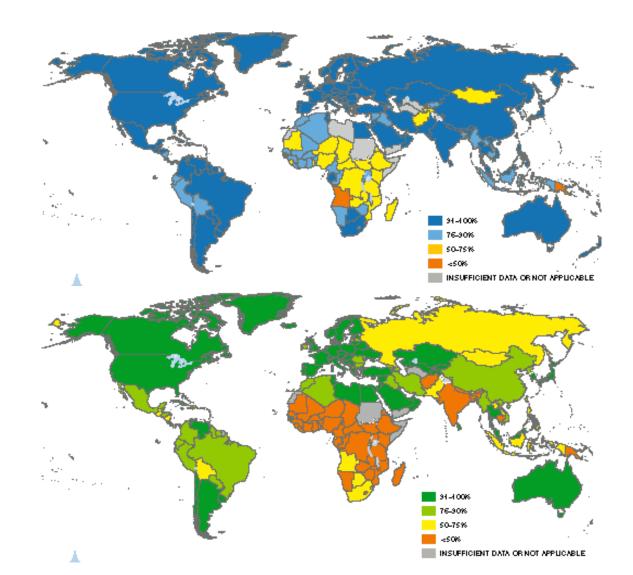
- Salmonella basics
- Typhoidal Salmonella in Africa
- Invasive non-typhoidal Salmonella disease in Africa
 - Hazards Associated with Zoonotic enteric pathogens in Emerging Livestock meat pathways (HAZEL)

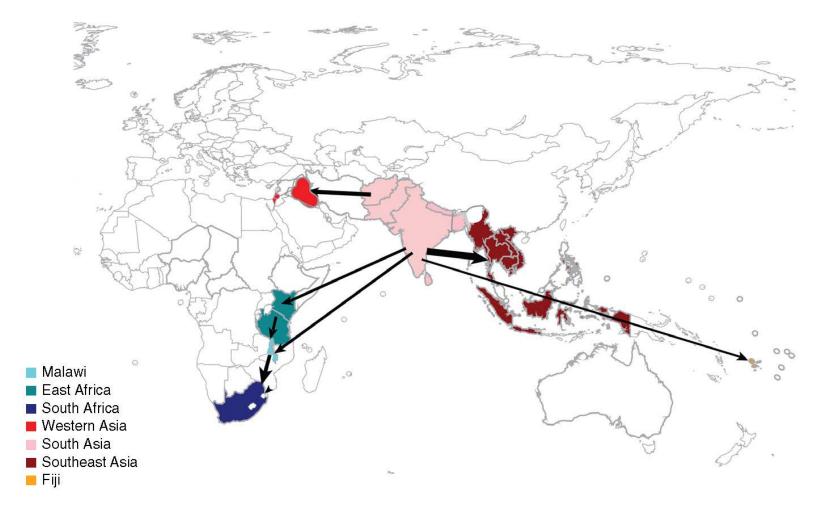

Salmonella enterica basics

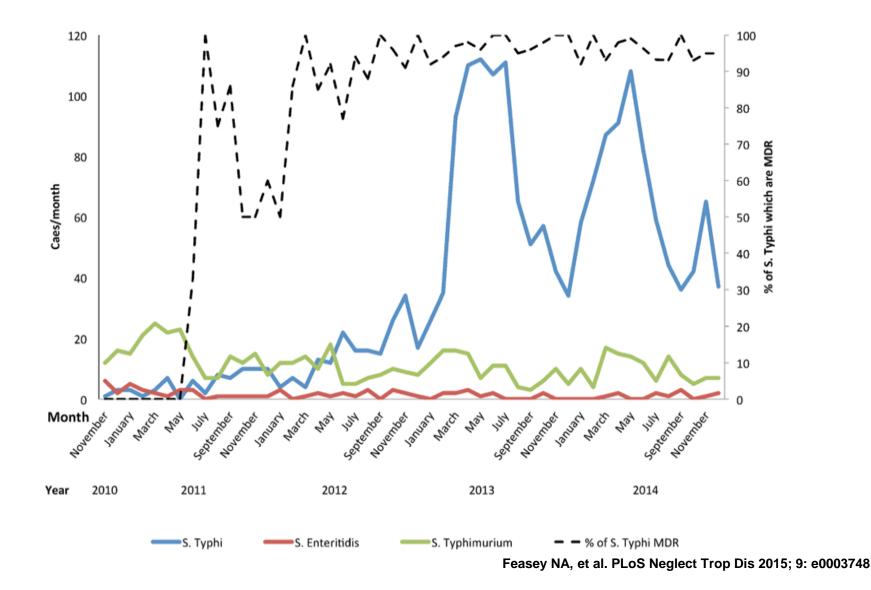
- Typhoidal Salmonella
 - Salmonella enterica serovars Typhi, Paratyphi A
 - Human host restricted
 - Fever, bloodstream infection: typhoid and paratyphoid (enteric) fever
 - Case fatality ratio ~1%
- Non-typhoidal Salmonella
 - >2,500 serovars e.g., Typhimurium, Enteritidis
 - Non-human animals: generalist, host adapted, host restricted
 - Diarrheal disease in industrialized countries
 - Fever, bloodstream infection in Africa, ~20% case fatality ratio


Typhoidal Salmonella in Africa

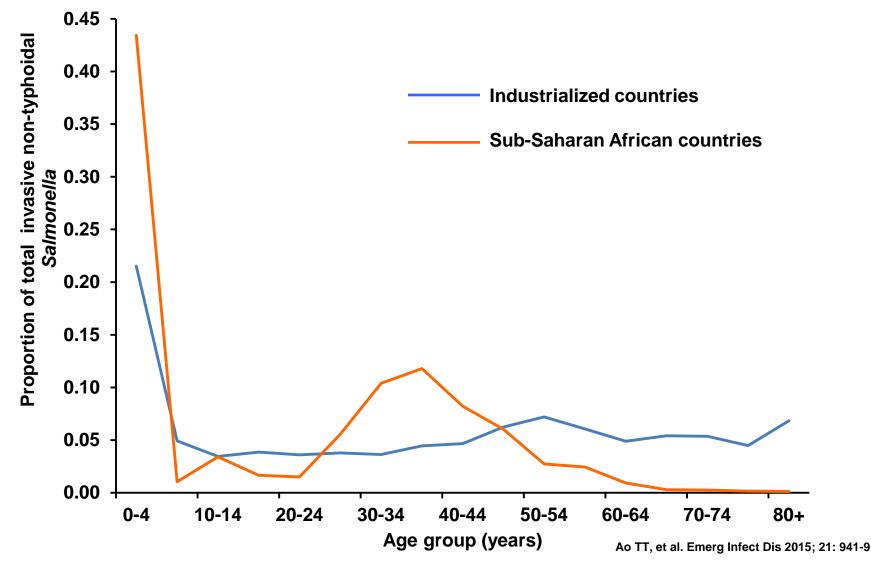
- Typhoid incidence in Africa south of Sahara lower than south and south east Asia
- Expanded surveillance studies
 - Incidence higher than previously thought in some areas


Typhoid fever incidence by country, 2000


Typhoid fever incidence by country, 2010


Proportion of population with access to improved drinking water and sanitation, 2015

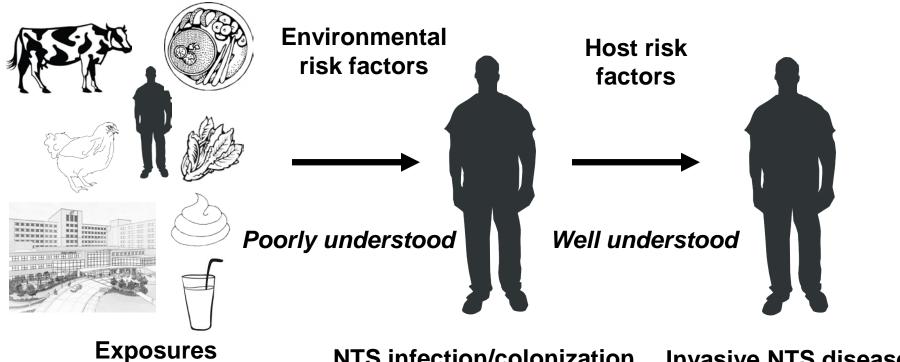
Major geographical transfers of Salmonella Typhi H58


Monthly trends *Salmonella* bloodstream infections, Blantyre, Malawi, 2010-2014

Non-typhoidal Salmonella infection in humans

- Industrialized countries
 - Foodborne transmission
 - Common cause of self-limited diarrhea
 - Occasionally invasive disease: infants, elderly, immunocompromised
- Sub-Saharan Africa
 - Transmission vehicles poorly understood
 - Leading community-acquired bloodstream infection
 - Uncommon cause of moderate to severe diarrhea

Proportion invasive NTS by age, industrialized and sub-Saharan African countries


Global incidence of enteric and invasive NTS, 2009 and 2010

	Enteric NTS 2009			Invasive NTS 2010		
Region	Population (000s)	Cases	Incidence (/100,000)	Population (000s)	Cases	Incidence (/100,000)
North Africa/Middle East	410,800	563,000	140	446,721	3,617	<1
Africa	767,239	2,458,000	320	854,091	1,942,776	227
Asia/Oceania	1,628,815	53,610,000	3,280	1,693,046	13,920	<1
Southeast Asia	2,072,274	29,839,000	1,440	2,220,248	472,263	21
Europe	738,071	5,065,000	690	746,372	763,191	102
Americas	888,437	2,222,000	250	934,132	210,811	23
GLOBAL	6,511,638	93,757,000	1,140	6,894,610	3,406,579	49

Invasive non-typhoidal Salmonella death estimates in context

Condition	Year	Source	Deaths	
Enteric NTS	2009	Majowicz SE	155,000	
Typhoid and paratyphoid fevers	2010	GBD	190,200	
Invasive NTS disease	2010	Ao TT	681,316	
Protein-energy malnutrition	2010	GBD	599,800	
Malaria	2010	GBD	1,169,500	
HIV	2010	GBD	1,465,400	

Pathway to invasive NTS in sub-Saharan **Africa**

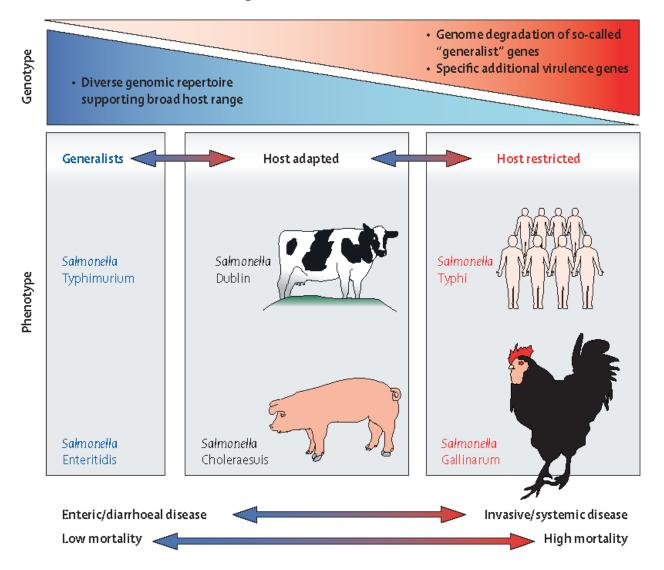
NTS infection/colonization **Invasive NTS disease**

Conclusions

- Typhoid fever appears to be a growing problem in Africa
 - Highly receptive due to poor improved water and sanitation coverage
 - Arrival of Salmonella Typhi H58 coincides increased incidence, epidemics
- Invasive non-typhoidal Salmonella disease
 - Highest incidence in infants, young children, and young adults
 - Large number of deaths
 - Incomplete understanding of sources, limiting prevention efforts

1 November 2015 Volume 61 Supplement 4

Clinical Infectious Diseases

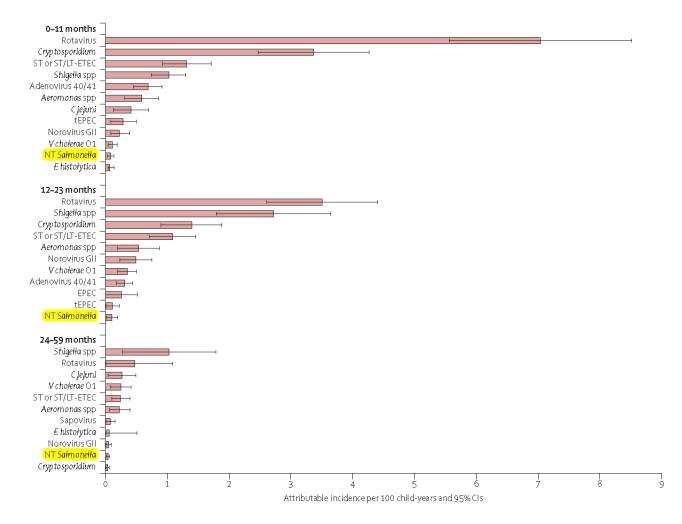

Invasive Salmonella Disease in Africa

OXFORD UNIVERSITY PRESS cid.oxfordjournals.org

A Supplement to Clinical Infectious Diseases

Host adaptation among *Salmonella* and clinical syndrome in the host

Clinical disease


• Bacteremia with sepsis

- Fever 95%
- No apparent focus 35%

• Non-specific presentation

- Diarrhea 20-50%, not prominent
- Pneumonia 60% children, 30% adults
- Splenomegaly 30-45%
- Hepatomegaly 15-35%
- Case fatality ratio high
 20-25%
- Recurrence 20-30%
 - 80% due to recrudescence

Attributable incidence of pathogen-specific moderate-to-severe diarrhea per 100 child-years by age stratum, all sites combined

Host risk factors

• Age

- Infants and young children

- Malaria
 - Recent malaria > current malaria
 - Severe malarial anemia
 - Sickle cell disease
 - Not with cerebral malaria
- Malnutrition
 - Severe acute malnutrition
- HIV
 - CD4-positive T-lymphocyte count <200 cells/mm³

Section of Tropical Diseases and Parasitology.

[November 7, 1929.]

Paratyphoid C an Endemic Disease of British Guiana : A Clinical and Pathological Outline. B. paratyphosum C as a Pyogenic Organism : Case Reports.

By George Giglioli, M.D.

of which 80 were confirmed bacteriologically by isolation of the specific organism from the blood during life, or from the spleen post mortem. The disease appears to be endemic in the Colony, with a tendency to occasional epidemic outbursts, two of which were observed in 1924 and 1926 respectively, in coincidence with important malarial outbreaks.

DEC.-TROP. DIS. 1

Giglioli G. Proc R Soc Med 1929; 23: 165-177

THE JOURNAL OF INFECTIOUS DISEASES • VOL. 155, NO. 6 • JUNE 1987 © 1987 by The University of Chicago. All rights reserved. 0022-1899/87/5506-0031\$01.00

Plasmodium falciparum Malaria and Salmonella Infections in Gambian Children

Malaria and invasive NTS

- Invasive NTS incidence varies in space with malaria transmission intensity
 - Moshi vs. Teule, Tanzania
 - Nairobi vs. Kisumu, Kenya
- iNTS incidence varies in time with malaria transmission intensity
 - Rising malaria: Kisumu, Kenya
 - Declining malaria: Fajara and Basse, Gambia; Teule, Tanzania

Biggs HM, et al. Clin Infect Dis 2014; 58: 638-47 Tabu C, et al. PLoS One 2012; 7: e31237 MacKenzie G, et al. PLoS One 2010; 5: e10568 Mtove G, et al. Malar J 2011; 10: 320

Mechanism for malaria and invasive NTS association

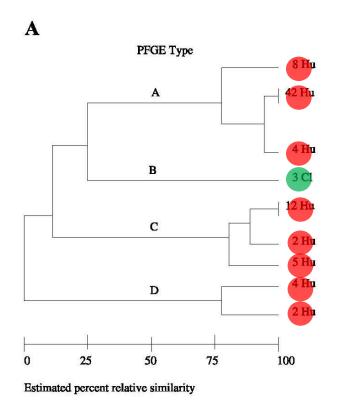
- Hemolysis-associated neutrophil dysfunction
- Parasite-induced IL-12 reduction
- Free iron
- Increased gut permeability
- Perturbation of the gut flora by sulfadoxinepyrimethamine

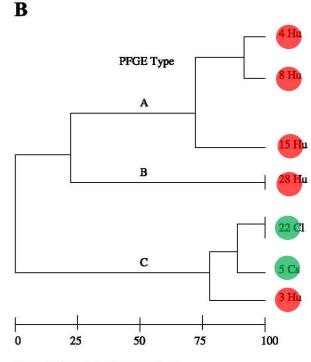
HIV and invasive NTS

- Proportion of invasive NTS cases with HIVinfection
 - Infants and children: 20%
 - Adolescents and adults: 95%
- Mechanisms
 - Loss on IL-17 producing CD4 cells in gut mucosa
 - Excess anti-LPS IgG inhibiting serum killing of extracellular Salmonella
 - Dysregulation of proinflammatory cytokine response allowing intracellular survival and persistence

The pathogen

- Salmonella Typhimurium ST 313
- Genomic features of human host adaptation
 - Genome degradation
 - Not host restricted
 - Will infect and cause disease in poultry
- Antimicrobial resistance
 - Ampicillin, trimethoprim-sulfamethoxazole, chloramphenicol
 - Fluoroquinolones
 - Extended spectrum cephalosporins


Environmental risk factors

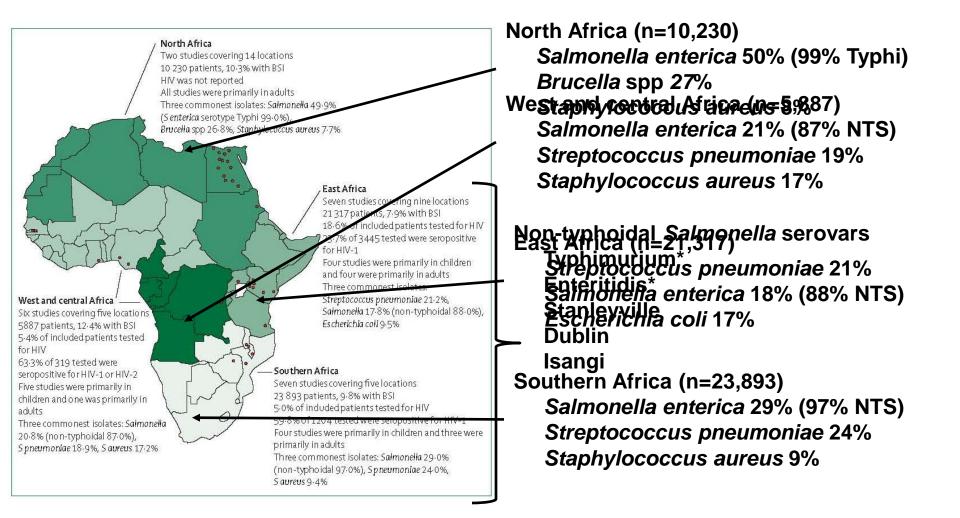

- Industrialized country paradigm
 - Food animal products
 - Feces contaminated produce and water
 - Direct and indirect animal contact
- Sub-Saharan African country challenges
 - Little epidemiologic research
 - Understanding infection/colonization
 - Genomic data suggest human host adaptation

Molecular relatedness of NTS isolated from humans and their peridomestic animals

Salmonella Typhimurium

Salmonella Enteritidis

Estimated percent relative similarity


Vaccines

- Polysaccharide Vi
 - Glycoconjugate polysaccharide-protein
 - Expand to relevant O and H antigens
- Live attenuated Ty21a
 - New live attenuated vaccines, multiple serovars
- Whole cell inactivated
 - Generalized Modules for Membrane Antigens (GMMA)
 - Recombinant purified protein
 - Select cross-protecting recombinant or purified proteins

Host factors

- Immunogenicity
- Safety (live attenuated)

Community-acquired bloodstream infections, Africa

Global Enterics Multi-center Study (GEMS)

- Etiology of moderate to severe diarrheal disease among infants and children <5 years of age in low-income countries
- 3-year prospective, age stratified, matched casecontrol study with 7 sites
 - 9,439 cases and 13,129 controls
- Calculated adjusted population attributable fraction
 - Accounting for presence of putative pathogens in control group

NTS and diarrhea in developing countries

Age group (months)	Basse The Gambia	Bamako Mali	Manhica Mozambique	Nyanza Kenya	Kolkarta India	Mirzapur Bangladesh	Karachi Pakistan
0-11	-	-	-	-	-	4.2 (2.2, 6.2)	-
12-23	-	-	-	3.2 (0.5, 6.0)	-	-	-
24-59	-	-	-	3.7 (1.2, 6.1)	-	-	-

Adjusted attributable fraction (95% CI)