

The core genome and beyond: comparative bacterial pathogenomics and functional gene analysis in foodborne pathogens

PJ Biggs^{1,2,3}, T Blackmore⁴, AD Reynolds⁵, AC Midwinter², J Marshall² and NP French^{1,2}

- 1. Allan Wilson Centre for Molecular Ecology and Evolution,
- 2. mEpiLab, Institute of Veterinary, Animal and Biomedical Sciences,
- 3. New Zealand Genomics Ltd (NZGL as Massey Genome Service) all at Massey University, Palmerston North, New Zealand.
- 4. Capital and Coast District Health Board, Wellington, New Zealand.
- 5. AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand.

OIE Collaborating Centre for Veterinary Epidemiology and Public Health

Acknowledgements

- members of mEpiLab, IVABS, Massey University
 - Lynn Rogers
- Massey Genome Service (MGS; a part of NZGL)
 - Lorraine Berry & Mauro Truglio
- Dept. of Zoology, University of Oxford, Oxford, UK
 - Keith Jolley & Martin Maiden
- **Funding**
 - Wellington Hospital Laboratory Education and Research Fund
 - IVABS, Massey University

OIE Collaborating Centre for Veterinary Epidemiology and Public Health

Overview

- The core genome
- Invasive isolates of Campylobacter spp.
- Comparative analysis
 - rMLST, core SNPs
 - Core genome and beyond
- COG classification for functional analysis
 - "biological weighting"

The core genome

- Genes present in ALL strains are core genes
 - A proxy for analysing evolution
- Genes present in a subset of strains are accessory genes
 - Virulence?
 - Niche adaptation?

Clinical observations

- 10 invasive isolates from Wellington Hospital from 2010 to 2012:
 - Aged 19 to 89 years
 - 6 presented with diarrhoea
 - Others
 - Headache
 - Prosthetic hip infection
 - Exacerbation of chronic pulmonary disease
 - 9 samples from blood
 - 1 sample from joint aspirate
- Outcomes:
 - 6/10 treated with oral ciprofloxacin
 - 43 year old died
 - One had episode 4 years earlier

- Campy bacteraemia appears to originate from acute colitis
- Bacteraemia relatively subtle part of illness
 - Only one person with sepsis syndrome
- Complicated infection with discitis or prosthetic joint infection suggestive of acute seeding of previously abnormal tissue
- Bacteraemia population rate = 7.6 per million person years
 - Denmark = 2.9 per million person years¹
- Bacteraemia:enteritis ratio = 0.4%
 - Finland = $0.3\%^2$

- 1: Nielsen et al. Clin Microbiol Infect 2010; 16: 57-61
- 2: Feodoroff et al. Clinical Infectious Diseases 2011;53(8):e99-e106

- MLST results:
 - 5 clonal complexes found:
 - 2 from CC677, 2 from CC443, 4 from CC21, 1 from CC354 and 1 from CC61
- For comparison, 2 random isolates taken per ST from the Oxford surveillance project (OXC)
- Genomes:
 - When compared to the 20 random chosen OXC genomes:
 - No overall difference in:
 - Overall genome size: 1.654 Mb (± 22kb) vs. 1.659 Mb (± 14kb)
 - GC content: 30.38% (± 0.06%) vs. 30.38% (± 0.05%)
 - Number of predicted genes: 1705 (± 30) vs. 1714 (± 18)
 - Difference in:
 - tRNA number: 42.1 (± 1.16) vs. 37.3 (± 2.21)
 - but these are probably due to *de novo* assembly issues

Results – ribosomal MLST (rMLST³)

52 genes (no rpmD in order Campylobacterales)

3: Jolley et al. Microbiology 2012 Apr;158(Pt 4):1005-15

Results – core SNPs

• e.g. kSNP2⁴ analysis based on 13,260 core SNPs

Optimal kmer value of 31

OXC7358_ST677
OXC7095_ST677_OXC6332_ST677
Caje_H1608_ST677
OXC7345_ST677

4: Gardner & Hall Plos One 2013 Dec9;8(12) e81760.

Results – core genome

Beyond the core

 From OrthoMCL, different genes are found in different combinations of CC

"EpiLab

- Clusters of Orthologous Groups COGs
- 1997 concept by Koonin et al. as a framework for functional and evolutionary genome analysis⁵
- Hierarchical process wherein:
 - Gene function defined into 26 codes (A to Z)
 - e.g. P = 'Inorganic ion transport and metabolism'
 - Each of the 4632 curated orthologous group of genes gets a COG classification, and with it a functional code
 - e.g. COG2847 = 'Copper(I)-binding protein'
- Idea: use COGnitor software to analyse the function of predicted genes

5: Tatusov et al. Science 1997 Oct 24;278(%338):631-7

Whole genome analysis by function

- Allows analysis of complete dataset i.e. not just the core genome
- Analysis as a two step process:
 - For each isolate under investigation:
 - BLAST the PROKKA gene predictions against COG database of ~1.8 million genes using PSIBLAST
 - Parse output with COGnitor and generate counts for each COG in the genome
 - For all isolates:
 - Detect COGs where there is a difference in number across isolates
 - Use these values to generate a distance matrix
 - Convert to Nexus format and view resulting tree as a NeighborNet in SplitsTree

Insights from function?

- Is the difference between absence/presence more important than that between the number of paralogues?
 - i.e.: should 1,0,0,1,2,5 be recoded as:
 - binary (1,0,0,1,1,1),
 - something else e.g. 1,0,0,1,1.3,1.7?
- Can look at this by changing weighting of the data in the distance matrix
- Values of weight w can vary between 0 and 1:
 - w = 0
 - Data is binary, i.e. absence or presence of a COG member
 - w = 1
 - Data has its values, i.e. 4 paralogues of a COG member provide 4x more weight than 1 member
- What is the value of w that is biologically relevant:
 - 0, 1, or somewhere in-between?

COG function – Euclidean (p = 2)

- What is the effect on genome datasets?
- Values of w varied from 0 to 1
- Correlation with ST rather than disease state

COG summary:

Absent: 3282

Present: 866

Variable: 484

w = 1.00

Summary

- 10 NZ invasive strains whole genome sequenced and 5 clonal complexes found
- Comparison with 20 OXC gastroenteritis isolates:
 - Isolates grouped by sequence type rather than phenotype at levels of:
 - rMLST, core SNP, core genome and COG function
- Differences in phenotype of invasive isolates are not at overall level of genome
 - Further work required to investigate the role of sequence differences

ST50 – slightly different

Summary

- 10 NZ invasive strains whole genome sequenced and 5 clonal complexes found
- Comparison with 20 OXC gastroenteritis isolates:
 - Isolates grouped by sequence type rather than phenotype at levels of:
 - rMLST, core SNP, core genome and COG function
- ST50 isolates from NZ show slight difference to initial OXC isolates
 - Further rMLST analysis showed most OXC ST50 isolates (193/200) are unlike NZ isolates
- Differences in phenotype of invasive isolates are not at overall level of genome
 - Further work required to investigate the role of sequence differences

