Evolution of Campylobacter in a 'persistently' colonised human host

Samuel Bloomfield¹², Jackie Benschop¹, Anne Midwinter¹, Patrick Biggs 1, David Hayman¹, Jonathan Marshall ${ }^{1}$, Philip Carter ${ }^{2}$ and Nigel French ${ }^{1}$

1 mEpiLab, Palmerston North, New Zealand, 2 ESR, Keneperu, New Zealand

IDReC
ivabs

Background

A source attribution study identified a patient that has been recurrently excreting Campylobacter for 7 years.

Sequence typing determined that all isolates previously collected from the patient belonged to the same strain, Campylobacter jejuni ST45.

Possible reasons for continued Campylobacter excretion:

- Continued colonisation by the same C. jejuni ST45 strain.
- Exposure to C. jejuni ST45 from multiple sources.
- Persistent exposure to a single C. jejuni ST45 source.

Aims

To determine the relatedness of Campylobacter isolates previously collected from a single patient.

To monitor Campylobacter's phenotype and genotype in a long-term excreter.

Whole genome sequencing

Isolates

Sequencing

Differences

ST45

- 6 isolates
- Isolated from faecal specimens from a single patient
- 2006-2013

Whole genome

 sequencing- Illumina Miseq
- 300 base pair reads

Single nucleotide polymorphisms

- SNPs
- Single bases that differ between isolates
- Snippy (v2.3) and kSNP (v3.0)
- C. jejuni str. 4031 as reference genome
- >10 read depth and $>90 \%$ consensus

NeighbourNet

NeighbourNet tree of 6 Campylobacter jejuni ST45 isolates (based on 170 core SNPs).

Common ancestor

Maximum clade credibility tree of 6 C. jejuni ST45 isolates, using a GMRF skyride model in BEAST (based on 170 core SNPs).
Scale is the length of 2 years and blue bars represent the 95\% HPD intervals for the timing of coalescent events.

Table of SNP types

Number of non-synonymous SNPs
Histogram of the number of genes containing nonsynonymous SNPs.

Protein differences

Protein function
Bar graph of proteins that differ between C. jejuni ST45 isolates and their functions, based on 50 non-synonymous SNPs. Total number of proteins that differ $=41$.

Motility

Time series of Campylobacter motility results (Error bars represent 95\% confidence intervals).

Antimicrobial susceptibility testing

Isolate	AMX	CHL	CIP	ERY	NA	TET
$19 / 12 / 2006$	S	S	R	R	R	S
$27 / 12 / 2007$	S	S	R	R	R	S
$5 / 02 / 2009$	R	S	R	R	R	S
$9 / 06 / 2011$	R	S	R	R	R	S
$31 / 01 / 2013$	R	S	HR	R	R	S
$23 / 09 / 2013$	R	S	HR	R	R	S

Key:
S
R
HR

Susceptible	AMX	Amoxicillin	ERY	Erythromycin
Resistant	CHL	Chloramphenicol	NA	Nalidixic acid
Highly resistant	CIP	Ciprofloxacin	TET	Tetracycline

Amoxicillin

Date of collection
Time series of C. jejuni ST45 amoxicillin disc diffusion results (error bars represent 95\% confidence intervals).

Amoxicillin resistance mechanism

A single nucleotide in the promoter region modulates the expression of the β-lactamase OXA-61 in Campylobacter jejuni.
Zeng et al., (2014) J. of Anti. Chemo. 69: 1215-1223.
Date of collection

Promoter

Campylobacter jejuni ST45 blaOXA-61 gene promoter alignment.

Starting codon

Ciprofloxacin

Time series of C. jejuni ST45 ciprofloxacin disc diffusion results over time (error bars represent 95\% confidence intervals).

Ciprofloxacin resistance mechanism

> Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa.
> Mouneimne, et al., (1999) Anti. Agents and Chemo. 43: 62-66.

```
19/12/2006 DSAGGSAKQGRERSEQAIIPIRGKIINVEKRRIDKIIKSEQIQNMITAEGCGIGEDEDISKIRYHKI
27/12/2007 DSAGGSAKQGRERSEQAIIPIRGKIINVEKARIDKIIKSEQIQNMITAEGCGIGEDEDISKIRYHKI
5/2/2009 DSAGGSAKQGRERSEQAIIPIRGKIINVEKARIDKIIKSEQIQNMITAEGCGIGEDEDISKIRYHKI
9/6/2011 DSAGGSAKQGRERSEQAIIPIRGKIINVEKARIDKIIKSEQIQNMITAEGCGIGEDEDISKIRYHKI
31/1/2013 DSAGGSAKQGRERSEQAIIPIRGKIINVEKRRIDKIIKFEQIQNMITAEGCGIGEDEDISKIRYHKI
23/9/2013 DSAGGSAKQGRERSEQAIIPIRGKIINVEKARIDKIIKFEQIQNMITAEGCGIGEDEDISKIRYHKI
```

Amino acid 460
Campylobacter jejuni ST45 GyrB amino acid alignment.

Conclusions

Gives insight into the evolution of Campylobacter within a continually excreting human host.

Provides evidence of Campylobacter phenotypic changes by the accumulation of SNPs.

Future directions

Determine if the onset of antibiotic resistance coincides with antibiotic therapy.

Monitor Campylobacter excretion regularly over a year and identify factors associated with excretion, e.g. microbiome changes, inflammation and immune markers.

Identify potential sources of C. jejuni ST45.

Acknowledgements

New Zealand Genomics Limited (NZGL)
Medlab Central, Palmerston North
PhD supervisors
IVABS post-graduate fund
Tui Shadbolt, Ministry of Primary Industries
Craig Thornley, Regional Public Health
ivabs

