

### Evolution of *Campylobacter* in a 'persistently' colonised human host

Samuel Bloomfield<sup>1</sup>, Jackie Benschop<sup>1</sup>, Anne Midwinter<sup>1</sup>, Patrick Biggs<sup>1</sup>, David Hayman<sup>1</sup>, Jonathan Marshall<sup>1</sup>, Philip Carter<sup>2</sup> and Nigel French<sup>1</sup>

1 <sup>m</sup>EpiLab, Palmerston North, New Zealand, 2 ESR, Keneperu, New Zealand







mEpiLab.massey.ac.nz



A source attribution study identified a patient that has been recurrently excreting *Campylobacter* for 7 years.

Sequence typing determined that all isolates previously collected from the patient belonged to the same strain, *Campylobacter jejuni* ST45.

# Possible reasons for continued *Campylobacter* excretion:

- Continued colonisation by the same *C. jejuni* ST45 strain.
- Exposure to *C. jejuni* ST45 from multiple sources.
- Persistent exposure to a single *C. jejuni* ST45 source.

### Aims

To determine the relatedness of *Campylobacter* isolates previously collected from a single patient.

To monitor *Campylobacter*'s phenotype and genotype in a long-term excreter.

## Whole genome sequencing

Isolates

Sequencing

Differences

#### ST45

- 6 isolates
- Isolated from faecal specimens from a single patient
- 2006-2013

Whole genome sequencing

- Illumina Miseq
- 300 base pair reads

### Single nucleotide polymorphisms

- SNPs
- Single bases that differ between isolates
- Snippy (v2.3) and kSNP (v3.0)
- *C. jejuni* str. 4031 as reference genome
- >10 read depth and
   >90% consensus



NeighbourNet tree of 6 *Campylobacter jejuni* ST45 isolates (based on 170 core SNPs).

### Common ancestor



Maximum clade credibility tree of 6 *C. jejuni* ST45 isolates, using a GMRF skyride model in BEAST (based on 170 core SNPs). Scale is the length of 2 years and blue bars represent the 95% HPD intervals for the timing of coalescent events.

#### Table of SNP types

Histogram of the number of

genes containing non-

synonymous SNPs.

## **Protein differences**



Bar graph of proteins that differ between *C. jejuni* ST45 isolates and their functions, based on 50 non-synonymous SNPs. Total number of proteins that differ = 41.



## Chemotaxis

Key:
No chemotaxis
Negative chemotaxis
Positive chemotaxis
PBS
PBS
Citrate
Deoxycholate
Pyruvate
L-serine

| Isolate    | 1 | 2 | 3 | 4 | 5 |
|------------|---|---|---|---|---|
| 19/12/2006 | 0 | 0 | - | + | + |
| 27/12/2007 | 0 | 0 | - | + | + |
| 5/02/2009  | 0 | 0 | - | + | + |
| 9/06/2011  | 0 | 0 | - | + | + |
| 31/01/2013 | 0 | 0 | - | + | + |
| 23/09/2013 | 0 | 0 | - | + | + |
| NCTC 11351 | 0 | 0 | - | + | + |
| NCTC 11168 | 0 | + | - | + | + |



Time series of *Campylobacter* motility results (Error bars represent 95% confidence intervals).

## Antimicrobial susceptibility testing

| Isolate    | AMX | CHL | CIP | ERY | NA | TET |
|------------|-----|-----|-----|-----|----|-----|
| 19/12/2006 | S   | S   | R   | R   | R  | S   |
| 27/12/2007 | S   | S   | R   | R   | R  | S   |
| 5/02/2009  | R   | S   | R   | R   | R  | S   |
| 9/06/2011  | R   | S   | R   | R   | R  | S   |
| 31/01/2013 | R   | S   | HR  | R   | R  | S   |
| 23/09/2013 | R   | S   | HR  | R   | R  | S   |

#### Key:

- S Susceptible R Resistant
- HR Highly resistant CIP
- AMX

CHL

- Amoxicillin
  - Chloramphenicol NA

ERY

TET

Ciprofloxacin

Erythromycin Nalidixic acid Tetracycline

### Amoxicillin



#### Date of collection

Time series of *C. jejuni* ST45 amoxicillin disc diffusion results (error bars represent 95% confidence intervals).



#### Date of collection

# Amoxicillin resistance mechanism

A single nucleotide in the promoter region modulates the expression of the  $\beta$ -lactamase OXA-61 in *Campylobacter jejuni*. Zeng *et al.*, (2014) *J. of Anti. Chemo.* **69**: 1215-1223.



### Ciprofloxacin



Date of collection

Time series of *C. jejuni* ST45 ciprofloxacin disc diffusion results over time (error bars represent 95% confidence intervals).



# Ciprofloxacin resistance mechanism

Type II topoisomerase mutations in ciprofloxacin-resistant strains of *Pseudomonas aeruginosa*. Mouneimne, *et al.*, (1999) *Anti. Agents and Chemo.* **43**: 62-66.

19/12/2006 DSAGGSAKQGRERSFQAILPLRGKILNVEKARLDKILK SEQIQNMITAFGCGIGEDFDLSKLRYHKI 27/12/2007 DSAGGSAKQGRERSFQAILPLRGKILNVEKARLDKILK SEQIQNMITAFGCGIGEDFDLSKLRYHKI 5/2/2009 DSAGGSAKQGRERSFQAILPLRGKILNVEKARLDKILK SEQIQNMITAFGCGIGEDFDLSKLRYHKI 9/6/2011 DSAGGSAKQGRERSFQAILPLRGKILNVEKARLDKILK SEQIQNMITAFGCGIGEDFDLSKLRYHKI 31/1/2013 DSAGGSAKQGRERSFQAILPLRGKILNVEKARLDKILK FEQIQNMITAFGCGIGEDFDLSKLRYHKI 23/9/2013 DSAGGSAKQGRERSFQAILPLRGKILNVEKARLDKILK FEQIQNMITAFGCGIGEDFDLSKLRYHKI

Campylobacter jejuni ST45 GyrB amino acid alignment.

### Conclusions

- Gives insight into the evolution of *Campylobacter* within a continually excreting human host.
- Provides evidence of *Campylobacter* phenotypic changes by the accumulation of SNPs.

### **Future directions**

Determine if the onset of antibiotic resistance coincides with antibiotic therapy.

Monitor *Campylobacter* excretion regularly over a year and identify factors associated with excretion, e.g. microbiome changes, inflammation and immune markers.

Identify potential sources of C. jejuni ST45.



### Acknowledgements

- New Zealand Genomics Limited (NZGL)
- Medlab Central, Palmerston North
- PhD supervisors
- IVABS post-graduate fund
- Tui Shadbolt, Ministry of Primary Industries
- Craig Thornley, Regional Public Health







