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The Anderson & May timeline
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May 1976. Theoretical Ecology: principles and applications.
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population interactions. I. Regulatory processes. and M & A
1978. . . . II. Destabilizing processes. J. Anim. Ecol.

A & M 1979. Population biology of infectious diseases: Part I.
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A & M 1980. Infectious diseases and population cycles of
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A & M 1981. The population dynamics of microparasites and
their invertebrate hosts. Phil.Trans. R. Soc. Lond. B.

A & M 1991. Infectious diseases of humans: dynamics and
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The submission

The submission letter (Robert May, 18 April 1980)
“. . . might be published as a free-standing issue”

The review (John Maynard Smith, 20 June 1980)
“Professor Harper asked me if I would look at the enclosed
manuscript. I think it is entirely suitable for publication in the
‘Transactions’. It is an important contribution to knowledge.
It is clearly written, and as brief as it could be in the light of
the field covered.”
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The publication

74 pages, 969 citations
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The commentary Phil.Trans.B (2015) 370:20140307

Hans Heesterbeek
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The J. Animal Ecology papers (1978)

Parasites of wildlife

Hosts
dN

dt
= (b − d)N − αP

Parasites
dP

dt
=

λNP

H + N
− (µ+ d + α)P − αk + 1

k

P2

N

Parasites are assumed to maintain a negative binomial
distribution, with mean P/N and exponent k .
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Anderson & May (1981)

 

Assume a constant population size.

Susceptibles
dX

dt
= b (X + Y )− dX − βXY + γY

Infecteds
dY

dt
= βXY − (α + d + γ)Y

The population size is H = X + Y .

The prevalence of infection y = Y /H obeys a logistic equation

dy

dt ′
= y ((R − 1)− Ry) R =

βH

α + d + γ

If R > 1 the infection persists and approaches y = 1− 1/R
over time.
If R < 1 the infection cannot persist and the prevalence
approaches zero.

We would now call R the basic reproduction number R0.
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Anderson & May (1981) Model A

In the basic model there is a threshold population size

R =
βH

α + d + γ
⇒ R =

βH

HT

The authors “break new ground” by allowing H to vary.

Hosts
dH

dt
= rH − αY

Infecteds
dY

dt
= βXY − (α + d + γ)Y

With no infection H grows exponentially at rate r = b − d .
With infection

If α < r then H grows exponentially at rate r − α.
If α > r then H the host population is regulated

H∗ =

(
α

α− r

)
HT Y ∗ =

r

α
H∗

We would now call HT the critical community size.
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Model A continued

The question: [whether] “natural populations of invertebrates
typically have microparasitic infections capable of regulating
them”.

The conclusion: [infections may] “contribute, wholly or in
part, to the regulation of their invertebrate host populations.”

The spinoff: if a pathogen were to be
selected for biological control, rather than
seeking the most pathogenic (highest
value of α), an intermediate value would
result in the lowest population density.
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Anderson & May (1981) Model G

Models B-F elaborated on Model A.

In Model G the authors introduce a free-living stage

Hosts
dH

dt
= rH − αY

Infecteds
dY

dt
= νWY − (α + d + γ)Y

Free-living
dW

dt
= λY − (µ+ νH)W

The conclusion: “highly pathogenic microparasites producing
very large numbers of long-lived infective stages are likely to
lead to non-seasonal cyclic changes in the abundance of their
invertebrate hosts and in the prevalence of infection.”
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Model G results

Pathogen pathogenicity 
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Model G conclusions

[the model is] “sufficient to account at least for most
long-term population cycles in forest insects”

Bowers et al. (1993). Contrary to previous related analyses,

“no support is provided for the view that host-pathogen
interactions alone are capable of generating cyclic dynamics of
the type observed”
“parameters from field estimates usually fail to generate
cycles”
“Even where cycles are generated, . . . [in the model] . . . disease
prevalence tends to peak at too high a value, and host density
peaks at a very much lower value than field data suggest.”

The usual explanation - hysteresis effects due to the short
insect and long forest timescales.
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Why model insect pathogens?

Climate change could make New Zealand suitable for the
Aedes mosquitoes that carry dengue and Zika viruses.

Releasing Wolbachia-infected males suppresses mosquito
populations.

Image from McGraw & O’Neill 2013 Nature Rev. Microbiol. 11, 181-193.
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Wolbachia

Releasing Wolbachia-infected females suppresses dengue
transmission.

Releasing Wolbachia-infected females suppresses mosquito
populations.

Images from McGraw & O’Neill 2013
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Counterintuitive effects - 1

Control measures may increase the incidence of dengue
haemorrhagic fever.
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Counterintuitive effects - 2

Reducing parasite intensity may not reduce prevalence.
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Counterintuitive effects - 3

Treating high-risk groups in the presence of antibiotic
resistance may not be the best strategy.
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Counterintuitive effects - 4

Suboptimal levels of vaccine coverage increases congenital
rubella syndrome.

All counterintuitive effects from Heesterbeek et al. 2015,
Modelling infectious disease dynamics in the complex
landscape of global health. Science.
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Back to the future

THE END

21 / 21



Back to the future

THE END

21 / 21



Back to the future

THE END

21 / 21



Back to the future

THE END
21 / 21


