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@ The submission letter (Robert May, 18 April 1980)
“. .. might be published as a free-standing issue”

@ The review (John Maynard Smith, 20 June 1980)
“Professor Harper asked me if | would look at the enclosed
manuscript. | think it is entirely suitable for publication in the
‘Transactions’. It is an important contribution to knowledge.
It is clearly written, and as brief as it could be in the light of
the field covered.”
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The J. Animal Ecology papers (1978)

o Parasites of wildlife
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Hosts E:(b—d)N—aP

dP ANP k+1P2?
= — d P—aq——M—
gt~ Han Wwtdtao)P-a

@ Parasites are assumed to maintain a negative binomial
distribution, with mean P/N and exponent k.

Parasites
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Anderson & May (1981)

@ Assume a constant population size.

X
Susceptibles C;—t =b(X+Y)—dX - XY +7Y

dy
Infecteds e BXY —(a+d+7)Y

@ The population sizeis H =X+ Y.
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Anderson & May (1981)

@ Assume a constant population size. = ,’\_ =

dX
Susceptibles pFr b(X+Y)—dX—pBXY +~vY

dY
Infecteds a4 =pXY —(a+d+7)Y
@ The population sizeis H=X +Y.
@ The prevalence of infection y = Y /H obeys a logistic equation

dy BH
2L —yv(R=1)=-R R= """
dt’ v (( ) Y) a+d+7y

o If R > 1 the infection persists and approaches y =1—1/R

over time.
e If R < 1 the infection cannot persist and the prevalence

approaches zero.
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dX
Susceptibles pFr b(X+Y)—dX—pBXY +~vY

dY
Infecteds a4 =pXY —(a+d+7)Y
@ The population sizeis H=X +Y.
@ The prevalence of infection y = Y /H obeys a logistic equation

dy BH
2L —yv(R=1)=-R R= """
dt’ v (( ) Y) a+d+7y

o If R > 1 the infection persists and approaches y =1—1/R

over time.
e If R < 1 the infection cannot persist and the prevalence

approaches zero.
@ We would now call R the basic reproduction number Ry.



Anderson & May (1981) Model A
@ In the basic model there is a threshold population size

a+d+y Hr
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@ The authors “break new ground” by allowing H to vary.
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Anderson & May (1981) Model A
@ In the basic model there is a threshold population size

a+d+y Hr

@ The authors “break new ground” by allowing H to vary.
Hosts dH =rH—aY
dt
dY
Infecteds e BXY —(a+d+7)Y
@ With no infection H grows exponentially at rate r = b — d.
o With infection

o If & < r then H grows exponentially at rate r — a.
e If & > r then H the host population is regulated

(]

a—r

@ We would now call Ht the critical community size.
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Model A continued

@ The question: [whether] “natural populations of invertebrates
typically have microparasitic infections capable of regulating
them”.

@ The conclusion: [infections may| “contribute, wholly or in
part, to the regulation of their invertebrate host populations.”
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Model A continued

@ The question: [whether] “natural populations of invertebrates
typically have microparasitic infections capable of regulating
them”.

@ The conclusion: [infections may| “contribute, wholly or in
part, to the regulation of their invertebrate host populations.”

1000 (@)

@ The spinoff: if a pathogen were to be
selected for biological control, rather than
seeking the most pathogenic (highest
value of «), an intermediate value would
result in the lowest population density.

0 7 14
a (arbit
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Anderson & May (1981) Model G

@ Models B-F elaborated on Model A.

@ In Model G the authors introduce a free-living stage
H
Hosts dH =rH—-aY
dt

dY
Infecteds a9t =vWY —(a+d+7)Y

dw

Free-living ar

=AY —(p+vH)W

@ The conclusion: “highly pathogenic microparasites producing
very large numbers of long-lived infective stages are likely to
lead to non-seasonal cyclic changes in the abundance of their
invertebrate hosts and in the prevalence of infection.”
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Model G results
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Model G conclusions

@ [the model is] “sufficient to account at least for most
long-term population cycles in forest insects”
@ Bowers et al. (1993). Contrary to previous related analyses,

e “no support is provided for the view that host-pathogen
interactions alone are capable of generating cyclic dynamics of
the type observed”

e “parameters from field estimates usually fail to generate
cycles”

o "Even where cycles are generated, ... [in the model] ... disease
prevalence tends to peak at too high a value, and host density
peaks at a very much lower value than field data suggest.”

@ The usual explanation - hysteresis effects due to the short
insect and long forest timescales.
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Why model insect pathogens?

@ Climate change could make New Zealand suitable for the
Aedes mosquitoes that carry dengue and Zika viruses.
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Why model insect pathogens?

@ Climate change could make New Zealand suitable for the
Aedes mosquitoes that carry dengue and Zika viruses.

@ Releasing Wolbachia-infected males suppresses mosquito
populations.

a Cytoplasmic incompatability
Wolbachia- Wild-type
carrying male female

Wolbachm

Image from McGraw & O’Neill 2013 Nature Rev. Microbiol. 11, 181-193.

15/21



Wolbachia

@ Releasing Wolbachia-infected females suppresses dengue
transmission.

b Pathogen blocking
Wolbachia- Wild-type Wolbachia-carrying offspring
carrying female male Pathogen-resistant females

B~ Fho M~ M
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Wolbachia

@ Releasing Wolbachia-infected females suppresses dengue
transmission.
b Pathogen blocking

Wolbachia- Wild-type Wolbachia-carrying offspring
carrying female male Pathogen-resistant females

o~ FhoME M M

@ Releasing Wolbachia-infected females suppresses mosquito
populations.

c Life shortening
Wolbachia- Wild-type Wolbachia-carrying offspring
carrying female male Reduced lifespan of adults

o~ FhoME M M

Images from McGraw & O’Neill 2013
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Counterintuitive effects - 1
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@ Control measures may increase the incidence of dengue
haemorrhagic fever.
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Counterintuitive effects - 2
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@ Reducing parasite intensity may not reduce prevalence.
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Counterintuitive effects - 3

C Without developing resistance
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@ Treating high-risk groups in the presence of antibiotic
resistance may not be the best strategy.



Counterintuitive effects - 4
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@ Suboptimal levels of vaccine coverage increases congenital
rubella syndrome.
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Counterintuitive effects - 4

30 yr cumulative CRS cases

T T T T T
0.0 0.2 04 0.6 0.8

Vaccination coverage

@ Suboptimal levels of vaccine coverage increases congenital
rubella syndrome.

@ All counterintuitive effects from Heesterbeek et al. 2015,
Modelling infectious disease dynamics in the complex
landscape of global health. Science.
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nized at least 250 years ago when, in 1766, Daniel
Bernoulli published a mathematical analysis of
the benefits of smallpox inoculation (then called
variolation) (22). In the past 50 years, the study
of infectious disease dynamics has grown into a
rich interdisciplinary field. For example, decision-
making for vaccination strategies increasingly
depends on model analyses in which infection
dynamics are combined with cost data (Box 2,
Influenza: prevention and control). In recent
decades, responses to major infectious disease
outbreaks, including HIV, bovine spongiform
encephalopathy (BSE), foot-and-mouth disease
(FMD), SARS, and pandemic and avian influ-
enza, have shown both the need for and capa-
bilities of models (Box 3, HIV: Test and treat
strategy). Model-based analysis of such outbreaks
also continually brings improvements in meth-
odology and data, emerging from the compari-
son of model prediction with observed patterns.

For infectious agents important to public health,
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