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Aims

@ Model-based analysis aims to provide a prediction of the RISK
posed by an epidemic in real-time
» Who is likely to be infected next?

» Who presents the greatest risk to the population if they get
infected?

» How many occult (undetected) infections are there?
» Incorporate parameter uncertainty into any predictions

@ What is the relative importance of various population
characteristics in propagating the current epidemic?

@ Measure uncertainty to better inform control policies
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A job for the statistician...?

@ Results of forward simulation depend on model parameters

@ To realise predictive power, require formal estimates for
parameters given the model

@ Historically:
» Estimation of Ry is relatively easy

* Relevance to heterogeneous populations?
» Difficult to estimate infection and removal rates together

References: Bailey (1975); Becker (1989)
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Available data

@ Covariate data
» Location, number and type of animals, contact networks
. . . Premises per kmA2 ’:

@ Epidemiological data = 2.14e611 '

» Detection times | 0.000000
» Cull times * IPs
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The Approach

@ Define a model for disease transmission in the population

Q@ Take prior opinion and field data - make inference on transmission
and removal parameters

©Q Use the results with forward simulation to make fully quantitative
predictions — the Predictive Distribution

Epidemic

Parameters
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The Model
Population structure
@ Farms progress S — | —- N — R
@ Populations are heterogeneously mixing and highly stochastic
» Contact networks

» Spatial proximity

Transmission

Airborne

Contacts
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The Problem

f(I.N,R|O
@ Missing data!

» Infection times are not directly observed
» What about occult infections?

@ Statistical likelihood function for the model conditional on the
infection times

@ We cannot explicitly write a likelihood function for censored
infection times

» Require an expectation over all possible infection times and occult
status
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A solution....

@ Construct a likelihood describing the continuous-time stochastic
epidemic

@ Bayesian approach allows:
@ Coherent inclusion of Prior information
* Expert opinion
* Previous disease outbreaks

@ Measures uncertainty
* avoids asymptotic assumptions

@ Natural framework to include unobserved data by data
augmentation MCMC methodology

* Unobserved infection times
* QOccult infections
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Prior distributions

@ Gamma for rates (8 > 0)
@ Beta for probabilities (0 < p < 1)
@ Wide range of choices for infection times (or infectious period)

@ Priors chosen to agree with expert opinion and previous
knowledge of epidemics

@ Frameworks and software, eg. SHELF (O’Hagan et al), Elicitor
(Kynn)
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Foot and Mouth 2007

@ 2007 outbreak in Surrey
comprising 9 ’known’ infected
premises

@ 21 farms slaughtered as
Dangerous Contacts

» Identified by Contact Tracing

@ Can we identify undetected
infected premises statistically?
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Foot and Mouth 2007

Data and priors

@ Covariate Data

» Location - OS Grid @ Priors based on posterior
coords of Kypraios 2007

» Number of cattle and (FMD2001)
sheep on farm (no
pigs!) @ Case data by email

Transmission model

Bjj = (Ciw + €s3i¢> (Cjw + Cssjw> “P3

ielje8
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Parameter learning

As the epidemic progresses, parameters information grows
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Infection Times

@ Estimation of infection times
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Bayesian guided surveillance - HPAIl example
Jewell and Roberts (2012) Biostatistics

@ Active surveillance scenarios: how should a limited active
surveillance resource be targetted?

@ If used: 15 farms surveyed per day, 10km radius of IPs

@ Perfect on farm test, depopulated within 24h
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Conclusions

@ Robust flexible likelihood-based Bayesian approach for real-time
parameter inference

@ Solves the problem of censored data in epidemics

@ In conjunction with forward simulation, this provides a powerful risk
assessment resource for use during a disease epidemic in the UK

» Bayesian predictive risk easily calculated using forward simulation.

@ Evidence to suggest highly effective for optimising allocation of
limited control resource.

@ Currently building into a prototype disease management system.
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Road map

@ Formal methods for model diagnostics — PRIORITY!

@ Assimilation of diverse data, eg pathogen sequencing, contact
tracing

@ Alternatives to standard MCMC, eg MWMH, GIMH, SMC

@ HPC - development of more effective parallel algorithms
» parallel clusters, GPU computing

@ Software:
» R-package BERP: Bayesian inference for Epidemic Risk prediction

» Interspread, the next generation ??
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Sellke diagnostics
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